State of California

Department of Rehabilitation

E&IT WEB ACCESSIBILITY TRAINING



Level One

Participant Guide

	Table of Contents
	

	Module 1: Welcome/Introduction
	

	Module 2: Why We Care
	

	Module 3: Section 508 & Web Content Accessibility Guidelines (WCAG)
	

	Module 4: Web Accessibility – The Foundation
	

	Module 5: Section 508 Compliance
	

	Module 6: Practice – Implementing Section 508
	

	Module 7: Content Redevelopment
	

	Module 8: Resources 
	

	Module 9: Summary 
	

	
	[image: image8.png]Name: [



[image: image9.png]hoose a color:

I Blue
I~ Green
[ Yellow




[image: image10.jpg]


[image: image11.jpg]


[image: image12.jpg]77\
<EXAMPLE>,

&/






Module 1. Welcome/Introduction 

Objectives

At the completion of this module, you will be able to: 

· State the purpose of the training 

Briefly describe Section 508 

508 Sections

· Software Applications and Operating Systems (1194.21)

· Web-based Intranet and Internet Information and Applications (1194.22) 

· Telecommunications Products (1194.23)

· Video or Multimedia Products (1194.24)

· Self Contained, Closed Products (1194.25)

1194.22 Requirements  

	1194.22 Part
	requirement

	a) Non-text elements

	Use text equivalents (proper alt, longdescr, title attributes).

	b) Multimedia
	Provide synchronized audio and text captioning of multimedia.

	c) Color

	Do not use color to convey information.

	d) Style sheets

	Organize documents so they may be read without style sheets.

	e) Image maps – server-side
	Place hyperlinks that are accessible to people who cannot use a mouse. 

	f) Image maps – client-side
	Provide client-side image maps instead of server-side image maps whenever possible because they are accessible by keyboard.

	g) Tables

	Associate data cells with their corresponding row and column labels clearly.


1194.22 Requirements (continued)

	1194.22 Part
	requirement

	h) Tables

	In tables with two or more logical levels of row/column headers, use markup to associate data cells and header cells.

	i) Frames

	Title frames so they can be easily navigated.

	j) Flicker

	Design pages to avoid causing the screen to flicker.

	k) Alternative page 

	When compliance cannot be achieved any other way, provide an alternative, compliant page.

	l) Scripting
	On pages that use scripting to create content or elements, provide accessible text equivalents for the information provided by the scripts.

	m) Applets
	Meet 1194.21 sub-paragraphs (a) through (l) requirements.

	n) Forms
	All controls, information, help, and cues associated with forms that are intended to be filled in online must be available to those using assistive technologies to complete the form.

	o) Navigation
	Provide the option to skip links that repeat page after page.

	p) Time-outs
	Provide a means for the user to request additional time on operations that time-out.


Non-Web Technologies Impacted by Section 508

· Electronic documents

· Computers

· Telephones 

· Copy machines

· Printers, fax machines

· Kiosks 

· PDAs

· Portable music players

Module 2. Why We Care

Objectives

At the completion of this module, you will be able to:

· Feel the frustration of using the Web if you are visually impaired, hearing impaired, mobility impaired  (can't use keyboard or mouse), or cognitively impaired

State several ways in which a website can be a challenge to those with a disability

Remember: Using the Web can be a frustrating and incomplete experience for people with any kind of disability—even a temporary one. Assistive technologies, such as screen magnifiers, speech synthesizers, and Braille displays can help. As a Web designer, you must be aware of accessibility issues and standards, and design to put content within the reach of people with disabilities. 

NOTES:

Module 3. Section 508 and Web Content Accessibility Guidelines (WCAG)

Objectives

At the completion of this module, you will be able to:

· State the basic requirements of Section 508 paragraph 1194.22 parts (a) through (p)

· Explain the meaning of the following terms: WCAG 1.0 Checkpoint, Level A (Double-A, Triple-A), and Priority 1, 2, and 3 checkpoints 

Identify where to find information on how to implement WCAG 1.0 guidelines

Section 508 & WCAG

Section 508 is a law based in part on the WCAG 1.0 guidelines. The 14 WCAG guidelines have checkpoints, prioritized by impact on accessibility. WCAG recognizes three levels of conformance to its guidelines: Levels A, Double-A, and Triple-A. 

Level A Definition 

Level A conformance means meeting all the highest-priority (Priority 1) checkpoints for all 14 guidelines.

Level A Requirements

The Level A requirements listed below are in addition to the ones that correspond to the Section 508 1194.22 (a) through (k) requirements. 

	Checkpoint
	requirement

	1.3
	Until user agents can automatically read aloud the text equivalent of a visual track, provide an auditory description of the important information of the visual track of a multimedia presentation. 

	4.1
	Clearly identify changes in the natural language of a document's text and any text equivalents (e.g., captions).

	6.2
	Ensure that equivalents for dynamic content are updated when the dynamic content changes. 

	6.3
	Ensure that pages are usable when scripts, applets, or other programmatic objects are turned off or not supported. If this is not possible, provide equivalent information on an alternative accessible page.

	8.1
	Make programmatic elements such as scripts and applets directly accessible or compatible with assistive technologies.

	14.1
	Use the clearest and simplest language appropriate for a site's content.


 Double-A Definition

Double-A conformance means meeting all the Priority 1 and Priority 2 checkpoints for all 14 guidelines. 

Note: None of these requirements are explicitly addressed by Section 508 1194.22. 

Double-A Requirements 

	Checkpoint
	SUBJECT
	Requirement

	2.2
	General
	Ensure that foreground/background colors have sufficient contrast.

	3.1
	General
	Use markup in place of images where possible.

	3.2
	General
	Validate your pages.

	3.3
	General
	Use CSS for layout and presentation.

	3.4
	General
	Use relative values for scalability.

	3.5
	General
	Use markup to convey document structure properly.

	3.6
	General
	Use markup to identify lists.

	3.7
	General
	Use <blockquote> to identify quotations, not for indenting.

	5.3
	Tables
	Do not use tables for layout unless the table makes sense when linearized.

	5.4
	Tables
	If tables are used for layout, do not use structural markup for visual formatting.

	6.4
	Applets/Scripts
	Ensure that event-handlers are device-independent.

	6.5
	General
	Ensure that dynamically generated content is accessible or provide alternate content.

	7.2
	General
	Avoid causing content to blink on and off.

	7.3
	Applets/Scripts
	Avoid movement in pages.

	7.4
	General
	Avoid creating pages that periodically auto-refresh.

	7.5
	General
	Avoid using markup to implement redirection. Redirection should be implemented server-side.

	9.2
	Applets/Scripts
	Any elements that have their own interface must be operable in a device-independent manner.

	9.3
	Applets/Scripts
	Specify logical event handlers rather than device-dependent handlers.

	10.1
	General
	Avoid using pop-ups or causing new windows to appear. Do not change the current window without informing the user.


Double-A Requirements (continued)
	Checkpoint
	SUBJECT
	Requirement

	10.2
	Forms
	Until user agents support explicit associations between label and form controls, for all form controls with implicitly associated labels, ensure that the label is properly positioned. 

	11.1
	General
	Use W3C technologies when they are available and appropriate for a task and use the latest versions when supported.

	11.2
	General
	Avoid using deprecated features.

	12.2
	Frames
	Describe the purpose of frames and how frames relate to each other if it is not obvious by frame titles alone.

	12.3
	General
	Divide large blocks of information into more manageable groups where natural and appropriate.

	12.4
	Forms
	Associate labels explicitly with their controls.

	13.1
	General
	Clearly identify the target of each link.

	13.2
	General
	Provide metadata to add semantic information to pages and sites.

	13.3
	General
	Provide information about the general layout of a site (e.g., a site map or table of contents).

	13.4 
	General
	Use navigation mechanisms in a consistent manner. 


Triple-A Definition

Triple-A conformance means meeting all checkpoints (Priority 1, 2, and 3) for all 14 guidelines.

Triple-A Requirements  

	Checkpoint
	Subject
	Requirement

	1.5
	Images/Image Maps
	Provide redundant text links for each active region of a client-side image map.

	2.2
	General
	Ensure that text foreground and background combinations have sufficient contrast.

	4.2
	General
	Expand abbreviations on first use.

	4.3
	General
	Identify the primary natural language of the document.

	5.5
	Tables
	Provide summaries for tables.

	5.6
	Tables
	Provide abbreviations for table header labels.

	9.4
	General
	Create a logical tab order through links, form controls, and objects.

	9.5
	General
	Provide keyboard shortcuts to important links and form controls.

	10.3
	Tables
	Provide a linear text alternative for side-by-side parallel columns.

	10.4
	Forms
	Put placeholder characters in empty text fields and text areas.

	10.5
	General
	Adjacent links should be separated by printable characters and white space.

	11.3
	General
	Provide alternate content according to user preference for language, type, etc.

	13.5
	General
	Provide navigation bars to highlight and give access to the navigation mechanism.

	13.6
	General
	Group related links, identify the grouping, provide a way to bypass groups.

	13.7
	General
	If search is provided, enable basic and advanced searching.

	13.8
	General
	Provide distinguishing info at the beginning of headers, paragraphs, lists, etc.

	13.9
	General
	Provide information about collections of documents (pages).

	13.10
	General
	Provide a means to skip over ASCII art.


Triple-A Requirements (continued)

	Checkpoint
	Subject
	Requirement

	14.2
	General
	Supplement text with audio or visuals if it will facilitate comprehension.

	14.3
	General
	Use a consistent style of presentation across pages.


NOTES:

Module 4. Web Accessibility – The Foundation

Objectives

At the completion of this module, you will be able to:

· Describe standards-based markup and why it is important

· Explain the key differences between HTML and XHTML

· Explain the benefits of CSS

· Explain the value of code validation

· Identify online validation tools

Identify online XHTML and CSS resources

Importance of Standards-Based Markup

Standards-based markup separates content, structure, and display. This is important because content (the information on a page) must be available to different accessibility technologies, as well as displayed differently for people with different disabilities. For example, visual content must also be presented non-visually for the blind.    

Similarly, structure must be separate from presentation, and clearly indicated as structure, to make it available for interpretation by accessibility technologies.

HTML was originally intended to describe only structure. Earlier versions of HTML did not do a good job of separating content, structure, and display.  HTML 4.01 separates display from structure and improves accessibility.

Two important tools for standards-based markup are XHTML and CSS (Cascading Style Sheets).

XHTML

XHTML is a reformulation of HTML as an XML application. It will display in your browser identically to the equivalent HTML. XHTML 1.0 can be seen as a descendant of HTML 4.01, but is technically stricter because of XML's influence. You might want to use XHTML if there is any chance you will need to reprocess your content; for instance, to send it to a PDA. XML's stricter syntax rules make automatic processing of XHTML much easier and cheaper than ordinary HTML.

CSS  

Style sheets define display elements for one or more Web pages. CSS is display markup, while XHTML elements are structural (logical organization) markup. Styles are specified once in an external style sheet and only referenced in the HTML document. External style sheets can save you a lot of work: you can make global changes to your site almost instantly by editing the .css file. 

“Cascading” means that multiple style sheets can be applied to one Web page.  Different media can automatically use different .css files so it is easy to repurpose your content.

Doc Types

XHTML uses three document types: 

· Strict – Display is fully separated from content and structure using CSS

· Transitional – Permits the use of deprecated tags and attributes in markup for controlling display

Frameset – For pages that establish frames; not relevant to accessibility

In XHTML code, a document type must be declared via the correct DOCTYPE.

A DOCTYPE includes a full URL (a complete Web address) which tells browsers to render your page in standards-compliant mode, treating your XHTML, CSS, and DOM as you expect them to be treated.  

Using an incomplete or outdated DOCTYPE—or no DOCTYPE at all—throws these same browsers into “Quirks” mode, where the browser assumes you’ve written old-fashioned, invalid markup and code per the depressing industry norms of the late 1990s.

In this setting, the browser will attempt to parse your page in backward-compatible fashion, rendering your CSS as it might have looked in Internet Explorer (IE) 4, and reverting to a proprietary, browser–specific DOM. (IE reverts to the IE DOM; Mozilla and Netscape Navigator (NN) 6 revert to who knows what.)

The California State standard is the XHTML 1.0 Strict DOCTYPE:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"


"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

Warning: Code the above DOCTYPE exactly as shown! 
Note: Some editing tools like TextMate will apply the correct DOCTYPE for you automatically—but you have to select the correct one first!

Tag Changes

In XHTML, all tags must be closed. For example, non-empty tags (tags which have content between an opening and closing tag) such as <p> and <li> must be closed using the corresponding </p> and </li> tags.

Empty tags (tags which do not have content between an opening and closing tag) such as <img> and <br> must be closed with a trailing forward slash “/”.

Before:

<img>

<br>

<hr>

After: 

<img />

<br />

<hr />

Note: All tags in XHTML are written in lowercase.

Attribute Changes

All attribute values must be quoted.

Before:

<img src=./images/photo1.jpg>

After:

<img src=”./images/photo1.jpg” alt=”Still Life with Candle” class=”thumbnail” />

Code Validation

All XHTML code should be checked for conformance to W3C Recommendations and other standards. Online validation is available at: http://validator.w3.org/ 

Deprecated Features

Refer to “Deprecated Elements and Attributes” for a complete list of deprecated features: http://webdesign.about.com/od/htmltags/a/bltags_deprctag.htm
Online XHTML Resources  

The following are online resources to support the Web developer in transitioning to XHTML:

· HTML Tidy http://tidy.sourceforge.net/
· Automated HTML processor

· The New York Public Library Online Style Guide www.nypl.org/styleguide/index.html
· Excellent guide to adopting standards-based markup

· QuirksMode.org http://www.quirksmode.org/  

· QuirksMode.org is the personal and professional site of Peter-Paul Koch, a freelance Web developer in Amsterdam, the Netherlands. It contains more than 150 pages with CSS and JavaScript tips and tricks, and is one of the best sources on the Web for studying and defeating browser incompatibilities.

· A List Apart http://www.alistapart.com/ 

· A List Apart explores the design, development, and meaning of Web content, with a special focus on techniques and benefits of designing with Web standards.

· The Web Standards Project http://www.webstandards.org/
· The Web Standards Project is a grassroots coalition fighting for standards to ensure simple, affordable access to web technologies for all.

CSS 

Zen Garden Example

http://www.csszengarden.com/
The following two screen shots are of the home page of the Zen Garden website. The only change that has occurred is that the reference to the CSS style sheet has changed, resulting in a dramatic site-wide change in style and layout!

[image: image1.png]s Zen

A demonstration of what
SV R—
visually through CSS-based
design. Select any style
sheet from the list to load it
into this page.
Download the sample

html file and css file

5 G&Tden The Beauty of CSS Design

The Road to Enlightenment

Littering a dark and dreary road lay the past relics of
browser-specific tags, incompatible DOMs, and broken CSS.
support.

Today, we must dear the mind of past practices. Web
enlightenment has been achieved thanks to the tireless efforts
of folklike the W3C, WaSP and the major browser creators.
The ess Zen Garden invites you to relax and meditate on the
important lessons of the masters. Begin to see with darity.
Learn to use the (yet to be) time-honored techniques in new
‘and invigorating fashion. Become one with the web.

So What is This About?

There is dlearly a need for CSS to be taken seriously by graphic artsts. The Zen Garden aims to
excite, inspire, and encourage participation. To begin, view some of the existing designs in the list.
Clicking on any ane willload the style sheet into this very page. The code remains the same, the
only thing that has changed is the external .cs file. Yes, reall.





Zen Garden, standard CSS 

[image: image2.png]hEN G\RI/JE&\I

‘THE BEAUTY Of Css DESIGN

=
A DEMONSTRATION OF MOZART'S KONZERT NR3 *ES DUR' FOR HORN AND ORCHESTRA

Tho road to onlightonment

‘Download the sample html
‘e and s

g et ey by O et o o
e DOV ok 38 oo

e st clerthe i ofpstpractics, We
“".Kmx um&fmmmé"{-‘%’”’""
5t o o .
e s 72n Gardn nvies you el nd mediste o the mportn
Jesons of e maser. Begi s with clrty Lear 0 v the e 0
5 i b et i s g e, oo

So what is this about?

e s cly o CSS e ki sy b
Garden s o excie,mspie pitcipaton.
:gn,mmﬁum&smm

excted is b ot ety b once B s
inthe hands of those abi t create beanty from structure. To dae, most
of neat tricks

examples. been, Structurists
‘and coders. Designers have yet o make their mark. This needs to change.





Zen Garden, “Mozart” CSS

Why CSS?

Styles were added to HTML 4.0 to solve a problem. Although HTML was to define document structure only, during the browser wars of the late 1990s, Netscape and Microsoft muddied the waters by adding “features” (really hacks) like the <font> and <color> tag. Developers added to the mess by figuring out that <table> code and 1 pixel transparent GIFs could be used to specify page layout in a fairly precise manner—the infamous “table hack.”  

The W3C stepped in with CSS as part of the HTML 4.0 specification. This allowed developers to once again separate display markup from structural markup.

Referencing CSS

External style sheets are stored in .css files and are referenced using the following methods. Both of these methods must be used inside the <head> tag. The @import rule is preferred!

Using the @import rule inside the <style> tag

This method is preferred because older browsers such as NN 4.x do not understand the @import rule and ignore it. Otherwise, it would see the CSS and make a hash of interpreting it.

<style type="text/css">

@import url(./includes/DOR-V1.css);

</style>

Using the <link> tag


Warning: This method is visible even to older browsers!

<link rel="stylesheet" type="text/css" href="DOR-V1.css" />

Multiple style definitions will cascade into one (successive styles overriding the previous). This is the “Cascading” in “Cascading Style Sheets.”
· Browser default

· External style sheet (.css file)

· Internal style sheet (inside the <head> tag)

· Inline style (inside an XHTML element using the “style” attribute)

Content Rework Example 

Before:

<tr>

   <td>

      <font face="Times New Roman, Times, serif" size="+2" color="#A5D6FF">L</font><font face="Verdana, Arial, sans-serif" size="0" color="#ff9900">orem ipsum dolor sit amet, consectetuer adipiscing elit, sed diam nonummy nibh euismod tincidunt ut laoreet dolore magna aliquam odio dignissim qui blandit praesent luptatum zzril delenit augue duis dolore te feugait nulla facilisi.</font>

      <br />

      <font face="Times New Roman, serif" size="-2" color="#999999">Cicero</font>

   </td>

</tr>

After:

<div class="mainCopy">

   <div class="subDiv1">

      <p><span class="dropCap">L</span> orem ipsum dolor sit amet, consectetuer adipiscing elit, sed diam nonummy nibh euismod tincidunt ut laoreet dolore magna aliquam odio dignissim qui blandit praesent luptatum zzril delenit augue duis dolore te feugait nulla facilisi.</p>

      <span id="signature">Cicero</span>

   </div>

</div>

Note:  In addition to removing all of the <font> tags, etc. and replacing them with styled <div> and <span> tags, we have changed from using the “table hack” for layout to using <div> tags.
CSS Syntax

The Class Selector

In our XHTML rework example above, we assigned CSS “classes” to several tags. We can now apply styles to those classes in exactly the way we assigned a style to the <body> tag. To address a CSS class, refer to it with by name, preceded by a “.”—keeping in mind the class name is case sensitive!

. mainDiv {


color: #999;


border: 1px dotted green;

}

Classes are used for style where multiple instances of that style can occur on the same page. For example, if you wanted to apply a style to a group of hyperlinks (your navigation bar for example), you would create a CSS class.

The ID Selector

In our XHTML rework example above, we assigned a CSS “id” to the <span> element applied to the signature. CSS ids are used when only a single instance of that style will occur on a given page. CSS id selectors are addressed by id name, preceded by a “#”—keeping in mind the class name is case sensitive!

#signature {


font-size: x-small;


font-style: italic;


font-weight: bold;

}

Matters of Size…

To allow content to scale properly when the visitor “zooms in,” sizes should be specified in relative, rather than absolute, units. This is not just a good practice; it is also required for WCAG 1.0 Double-A compliance!

Sizing and scaling is a surprisingly complex subject—one that is often subject to heated debate in the CSS online community. This is partially because of the Web designer community’s desire to have greater control over font display, and partially because the existing solutions are imperfect.

Font Sizing 

The W3C recommends using “em” as the relative unit for sizing and defines it as, "the computed value of the 'font-size' property of the element on which it is used. The exception is when 'em' occurs in the value of the 'font-size' property itself, in which case it refers to the font size of the parent element." 

In other words, 1em is equal to 100% of the default font for the browser. For most browsers, that’s 16px, which is too large for most designers. To get around this, we generally set the initial font value to something smaller than 1em:

body {

font-size: 1em;

}

h1 {

font-size: 2em;

}

p {

font-size: 1em;

}

The problem with this approach is that if the visitor sets the “text-size” setting in IE to “smaller” or “smallest,” the text becomes so small it is unreadable. As IE is so popular and the “smaller” text-size setting is a popular one, this is a real problem.
A Recommended Approach 

The tiny text problem can be overcome by setting the initial font size to a percentage. When this solution is implemented, the font-size changes between the IE text-size settings do not appear to be as drastic, and we can set a sensible initial text size that will resize to a readable size at “smaller” and “smallest” settings.

body {

   font-size: 100%; /* initial font size specified as percentage */

}

h1 {

   font-size: 2em;

}

p {

   font-size: 1em;

}

Note: The above example has a comment included in the style sheet. CSS comments start with “/*” and terminate with “*/”. Everything in between the two is ignored. As style sheets can often be quite long, it is recommended that you comment your styles. 

Elastic Design

Another benefit of using ems over keywords is that you can use ems to define the dimensions of your entire layout, which will then scale in proportion to the text.

CSS Positioning

The State of California has adopted CSS Positioning as a best practice. In short, this means that the use of the “table hack” to control page layout is no longer accepted practice. 

The CSS Positioning properties allow you to specify the left, right, top, and bottom position of an element. They also allow you to set the shape of an element, place an element behind another, and to specify what should happen when an element's content is too big to fit in a specified area.

The W3C Box Model

For display purposes, every element in a document is considered to be a rectangular box that has a content area surrounded by padding, a border, and margins. The illustration on the next page shows these various parts.

[image: image3.jpg]BOX WIDTH

o

serer Padding

Ma quande lingues coalesce, Ii grammatica del resultant
lingue es plu simplic e regulari quam ti del coalescent
lingues. Li nov lingua franca va esser plu simplic e regulari
quam Ii existent Europan lingues. It va esser tam simplic
quam Occidental: in fact, it va esser Occidental. A un
Angleso it va semblar un simplificat Angles, quam un skep-
tic Cambridge amico dit me que Occidental es.

oadcing

L e





From the outer box to the inner box in the above image we have: (a) margin, (b) border, (c) padding, and (d) content. Margins, borders, and padding are all optional. For purposes of calculating box position and size they are given a default width of zero unless otherwise specified. Different widths can be set for each side (top, right, bottom, and left) if desired. Margins can even have negative values. 

When you specify width or height in CSS, you are specifying the width or height of the outer margin box. (This is not the same as the width and height of the content area if your padding and/or border and/or margins are not zero.)

In converting from a table-based layout, the general idea is to replace the table code that serves as containers for your content with <div> tags. Then, applying CSS Positioning markup, set the position of each <div> tag (using absolute, relative, or float positioning) to lay the page out in the way you wish.

· Absolute Positioning—specifies an absolute position of an element relative to the upper left corner of the browser window

· Relative Position—specifies the position of an element relative to its normal position (the position it would have if you specified no position at all)

· Float—allows text to wrap around an image, among other things

· Z-Index—allows you to set the vertical position on the page so that one object may overlap another

CSS Validation

All CSS code should be validated for conformance to W3C recommendations. Online CSS validation is available here: http://jigsaw.w3.org/css-validator/ 
Online CSS Resources

· CSS Design: Size Matters: www.alistapart.com/stories/sizematters/
· Elastic Design: www.alistapart.com/articles/elastic/
· CSS Positioning at Brainjar.com: www.brainjar.com/css/positioning
· Introduction to CSS Layout: www.oreillynet.com/pub/a/javascript/synd/2002/03/01/css_layout.html 

Recommended Reading:

· An excellent guide to adopting standards-based markup is The New York Public Library Online Style Guide: www.nypl.org/styleguide/index.html 

· Cascading Style Sheets: The Definitive Guide, 2nd Edition, by Eric Meyer. O’Reilly Publishing

Module 5. Section 508 Compliance 

Objectives

At the completion of this module, you will be able to:

· Explain the meaning of each 1194.22 element

Explain how to implement each 1194.22 element

1194.22 Elements

a) Non-text elements—Images, animations, audio, and video require text equivalents. 


Use "alt" with descriptive text. In the After example below, elolivo.html contains a text description of the image.

Before:

<img src=”./images/photo1.jpg” class=”thumbnail” />

After:

<img src=”./images/photo1.jpg” class=”thumbnail” alt=”El Olivo, by David Smith-Harrison” longdesc=”./copy/elolivo.html” />


Warning: The longdesc tag does not work in all browsers. As an alternative, a simple hyperlink to the long description can also be supplied in the image caption, for example.

b) Multimedia—Provide synchronized audio and text captioning of multimedia. 

For further information on implementing this checkpoint, refer to the W3C document “Techniques for WCAG 1.0”—http://www.w3.org/TR/2000/NOTE-WCAG10-TECHS-20001106/
c) Color—Do not use color to convey information 

[image: image4.jpg]77\
<EXAMPLE>,

&/




Before:

All red fields are required

<label style=”color: red;”>First Name</label>

After: 

All bold fields are required
<label style=”color: red; font-weight: bold;”>First Name</label>

[Ed. - Note that this is not a great solution either because it uses visual styling. A better solution would be to mark required fields with an asterisk]
d) Style sheets—Organize documents so they may be read without style sheets.

Use Javascript alternatives. Use the <noscript> tag. 

<script type="text/javascript" src="myScript.js" />

<noscript>


Alternative html here.  You can put entire layouts here if you need to.

</noscript>

e) Server-side image-maps—Place hyperlinks that are accessible to people who cannot use a mouse

Provide an alternative list of image map choices and indicate the existence and location of the alternative list (e.g., via the "alt" attribute). 
Before:

<a href="http://www.example.com/cgi-bin/imagemap/my-map">

<img src="welcome.gif" alt="Welcome!" ismap />

</a>

After:

<a href="http://www.example.com/cgi-bin/imagemap/my-map">

<img src="welcome.gif" alt="Welcome! (Text links follow)" ismap />

</a>

[<a href="reference.html">Reference</a>]

<br />

[<a href="media.html">Audio Visual Lab</a>]

f)  Client-side image maps—Provide client-side image maps instead of server-side image maps whenever possible because they are accessible by keyboard. 


Server-Side Map:

<a href="http://www.example.com/cgi-bin/imagemap/my-map">

<img src="welcome.gif" alt="Welcome!" ismap />

</a>

Client-Side Map:

<object data="navbar1.gif" type="image/gif" usemap="#myMap">

<map name="myMap">

     <p>Navigate the site</p>

     [<a href="guide.html" shape="rect"

        coords="0,0,118,28">Access Guide</a>]

     [<a href="shortcut.html" shape="rect"

        coords="118,0,184,28">Go</a>]

     [<a href="search.html" shape="circle"

        coords="184.200,60">Search</a>]

     [<a href="top10.html" shape="poly"

        coords="276,0,276,28,100,200,50,50,276,0">

          Top Ten</a>]

</map>

</object>

g) Tables: Row and column headers—Associate data cells with their corresponding row and column labels clearly.
This example shows how to associate data cells (created with TD) with their corresponding headers by means of the "headers" attribute. The "headers" attribute specifies a list of header cells (row and column labels) associated with the current data cell. This requires each header cell to have an "id" attribute.

The resulting table looks like this:

	Cups of coffee consumed by each assemblyman

	Name  
	Cups 
	Type of Coffee 
	Sugar?

	M. Leno 
	10 
	Espresso 
	No

	J. Dinnen 
	5 
	Decaf 
	Yes


A speech synthesizer might render this table as follows:

Caption: Cups of coffee consumed by each senator

Summary: This table charts the number of cups of coffee consumed by each senator, the type of coffee (decaf or regular), and whether taken with sugar.

Name:
M. Leno, Cups: 10, Type: Espresso, Sugar: No

Name:
J. Dinnen, Cups: 5, Type: Decaf, Sugar: Yes

Before:

<table class="myTable">


<tr>   

       <td>Name</td>

       <td>Cups</td>     

       <td>Type of Coffee</td>

       <td>Sugar?</td>


</tr>


<tr>  

       <td>M. Leno</td>  

       <td>10</td>

       <td>Espresso</td>

       <td>No</td>  


</tr>


<tr>  

       <td>J. Dinnen</td> 

       <td>5</td>

       <td>Decaf</td>

       <td>Yes</td>


</tr>

</table>

After:

<table class="myTable" 


summary="This table charts the number of

            cups of coffee consumed by each assemblyman,  

            the type of coffee (decaf or regular),

            and whether taken with sugar.">


<caption>Cups of coffee consumed by each assemblyman</caption>


<tr>   

       <th id="name">Name</th>

       <th id="cups">Cups</th>     

       <th id="type" abbr="Type">Type of  Coffee</th>   

       <th id="sugar">Sugar?</th>


</tr>


<tr>  

       <td headers="name">M. Leno</td>  

       <td headers="cups">10</td>

       <td headers="type">Espresso</td>

       <td headers="sugar">No</td>  


</tr>


<tr>  

       <td headers="name">J. Dinnen</td> 

       <td headers="cups">5</td>

       <td headers="type">Decaf</td>

       <td headers="sugar">Yes</td>


</tr>

</table>

[Ed. – For simple two-dimensional tables like this, it is easier to use the “scope” attribute. More complex tables however require the solution shown above.]
h) Tables: Two or more logical levels of row/column headers—Use markup to associate data cells and header cells.
[image: image5.jpg]77\
<EXAMPLE>,

&/




The following example shows how to create categories within a table using the "axis" attribute. The axis attribute may be used to place cells into conceptual categories that can be considered to form axes in a two-dimensional table. 
<table class="myTable">

    <caption>Travel Expense Report</caption>

    <tr>  

          <th></th>  

          <th id="header2" axis="expenses">Meals</th>

          <th id="header3" axis="expenses">Hotels</th>

          <th id="header4" axis="expenses">Transport</th>

          <th>subtotals</td>


</tr>

    <tr>  

         <th id="header6" axis="location">San Jose</th>

         <th></th><th></th><th></th><th></th>


</tr>

    <tr>  

        <td id="header7" axis="date">25-Aug-97</td>

        <td headers="header6 header7 header2">37.74</td>

        <td headers="header6 header7 header3">112.00</td>

        <td headers="header6 header7 header4">45.00</td>

        <td></td>


</tr>

    <tr>  

        <td id="header8" axis="date">26-Aug-97</td>

        <td headers="header6 header8 header2">27.28</td>

        <td headers="header6 header8 header3">112.00</td>

        <td headers="header6 header8 header4">45.00</td>

        <td></td>


</tr>

    <tr>  

        <td>subtotals</td>

        <td>65.02</td>

        <td>224.00</td>

        <td>90.00</td>

        <td>379.02</td>


</tr>

    <tr>   

        <th id="header10" axis="location">Seattle</th>

        <th></th><th></th><th></th><th></th>


</tr>

    <tr>  

        <td id="header11" axis="date">27-Aug-97</td>

        <td headers="header10 header11 header2">96.25</td>

        <td headers="header10 header11 header3">109.00</td>

        <td headers="header10 header11 header4">36.00</td>

        <td></td>


</tr>

    <tr>  

        <td id="header12" axis="date">28-Aug-97</td>

        <td headers="header10 header12 header2">35.00</td>

        <td headers="header10 header12 header3">109.00</td>

        <td headers="header10 header12 header4">36.00</td>

        <td></td>


</tr>

    <tr>  

        <td>subtotals</td>

        <td>131.25</td>

        <td>218.00</td>

        <td>72.00</td>

        <td>421.25</td>


</tr>

    <tr>   

        <th>Totals</th>

        <td>196.27</td>

        <td>442.00</td>

        <td>162.00</td>

        <td>800.27</td>


</tr>

</table>

A browser would render this table as follows:

	
	Meals  
	Hotels  
	Transport  
	subtotals

	San Jose 
	
	
	
	

	25-Aug-97 
	37.74 
	112.00 
	45.00 
	

	26-Aug-97 
	27.28 
	112.00 
	45.00 
	

	subtotals 
	65.02 
	224.00 
	90.00 
	379.02

	Seattle 
	
	
	
	

	27-Aug-97 
	96.25 
	109.00 
	36.00 
	

	28-Aug-97 
	35.00 
	109.00 
	36.00 
	

	subtotals 
	131.25 
	218.00 
	72.00 
	421.25

	Totals 
	196.27 
	442.00 
	162.00 
	800.27


i) Frames—Title frames so they can be easily navigated. 


Frames are discouraged for usability reasons but if you must use them, use the following title markup:

Before:

<FRAMESET cols="10%, 90%">  

    <FRAME src="nav.html">  

    <FRAME src="doc.html">

    <NOFRAMES>

       <a href="lib.html">electronic library</a>  

    </NOFRAMES>

</FRAMESET>

After:

<frameset cols="10%, 90%"

          title="Our library of electronic documents">  

    <frame src="nav.html" title="Navigation bar">  

    <frame src="doc.html" title="Documents">

    <noframes>

       <a href="lib.html" title="Library link">electronic library</a>

    </noframes>

</frameset>
j) Flicker—Design pages to avoid causing the screen to flicker. Flicker at certain frequencies can trigger seizures in some people.

For further information on implementing this checkpoint, refer to the W3C document “Techniques for WCAG 1.0”—http://www.w3.org/TR/2000/NOTE-WCAG10-TECHS-20001106/
k) Alternative page—When compliance cannot be achieved any other way, provide an alternative, compliant page.

For further information on implementing this Checkpoint, refer to the W3C document “Techniques for WCAG 1.0”—http://www.w3.org/TR/2000/NOTE-WCAG10-TECHS-20001106/
l) Scripting—On pages that use scripting to create content or elements, provide accessible text equivalents for the information provided by the scripts. 


Use the <noscript> tag to implement this.

<script type="Javascript">

...some javascript to show a billboard of sports scores...  

</script>

<noscript>     

<p>Results from yesterday&rsquo;s games:</p> 

<dl>

      <dt>Bulls 91,  Sonics 80.</dt>

      <dd><a href="bullsonic.html">Bulls vs. Sonics game highlights</a></dd>

</dl>

</noscript>

m) Applets—Embedded applets must meet 508 § 1194.21 standards (most of which pertain to accessibility by people with vision impairments). 

For further information on implementing this Checkpoint, refer to the W3C document “Techniques for WCAG 1.0”—http://www.w3.org/TR/2000/NOTE-WCAG10-TECHS-20001106/
n) Forms—All controls, information, help, and cues associated with forms that are intended to be filled in online must be available to those using assistive technologies to complete the form. 


Lay out the form logically so that it can be navigated easily with the [tab] key; use the <label> tag appropriately; group related fields using the <fieldset> tag.

<label for="name">Name</label>

<input id="name" type="text" name="textfield">

<fieldset>

<legend>Choose a color:</legend><br>

<input id="blue" type="checkbox" name="checkbox" value="checkbox"> <label for="blue">Blue</label><br>

<input id="green" type="checkbox" name="checkbox2" value="checkbox"> <label for="green">Green</label><br>

<input id="yellow" type="checkbox" name="checkbox3" value="checkbox">

<label for="yellow">Yellow</label>

</fieldset>


o) Navigation—Provide the option to skip links that repeat page after page. 

[image: image6.jpg]77\
<EXAMPLE>,

&/




[image: image7.png]|1 Accessibility Information ¥ Skip to Content ¥ Skip to Footer " Change Text Size





p) Time-outs—Let visitor request additional time. 

For further information on implementing this checkpoint, refer to the W3C document “Techniques for WCAG 1.0”—http://www.w3.org/TR/2000/NOTE-WCAG10-TECHS-20001106/
Section 508 Code Validation

· Just because your page has “passed” a code validation checker (like Bobby), doesn’t mean that the page is accessible

· Validation checkers have limitations due to the inherently subjective nature of Section 508 requirements

· Personally evaluate your response to each Section 508 requirement in addition to using validation tools

Validation Techniques

· Be sure your XHTML and CSS validate first!

· Validate with an automated checker like Bobby to catch the easy things like alt attributes

· Use a variety of browsers and assistive technologies like JAWS

· Try using your site without a mouse

· Involve your user community where possible

Validation Tools

www.w3.org/WAI/ER/tools/

Module 6. Practice – Implementing Section 508

Objectives

At the completion of this module, you will be able to:

· Identify elements of your own websites that are not in compliance with Section 508

· Explain what steps you took to implement specific elements of 1194.22 on your own websites

Explain why you took the steps you did.

Worksheet/Checklist

Identify what needs to be changed on your website. Refer to the list of elements on pages 5 and 6 for more information.

	1194.22 element
	what needs to be changed on your website 

	a. Non-text elements
	

	b. Multimedia
	

	c. Color
	

	d. Style sheets
	

	e. Image maps
	

	f. Image maps
	

	g. Tables
	

	h. Tables
	

	i. Frames
	

	j. Flicker
	

	k. Alternative page
	

	l. Scripting
	

	m. Applets
	

	n. Forms
	

	o. Navigation
	

	p. Time-outs
	


Worksheet/Checklist

Identify what needs to be changed on your partner's website. Refer to the list of elements on pages 5 and 6 for more information.

	1194.22 element
	what you found on your partner’s website 

	a. Non-text elements
	

	b. Multimedia
	

	c. Color

	

	d. Style sheets
	

	e. Image maps
	

	f. Image maps
	

	g. Tables

	

	h. Tables

	

	i. Frames

	

	j. Flicker

	

	k. Alternative page 
	

	l. Scripting
	

	m. Applets
	

	n. Forms
	

	o. Navigation
	

	p. Time-outs
	


Module 7. Content Redevelopment 

Objectives

At the completion of this module, you will be able to:

· Explain why we don't post documents

· Name one example of a document conversion tool

· Explain some of the issues related to accessible JavaScript

Explain some of the issues related to accessible Flash

Posting Documents: Accessibility Issues

Remember, the “native language” of the web is XHTML and we should use that wherever possible.

Microsoft Office

Microsoft Office documents (Word, PowerPoint, etc.)  are not natively accessible and present usability problems to visitors who do not have Microsoft Office software. There are tools available to convert Office documents to "accessible HTML," but such tools can only do so much. It remains the developer's responsibility to check accessibility thoroughly after conversion.

PDFs

Similarly, PDF files require a PDF viewer for access.

· Post PDFs only when necessary; e.g., when WYSIWYG documents are required or there is a compelling reason (e.g., legal requirement). Do NOT use it as a “quick and dirty” way of getting content onto your site

· If you must post a PDF, make it as accessible as possible:

· Start with the original document if possible (e.g., the Word file)

· Clean up the Word file, using the built-in styles for formatting headings (use Heading 1, Heading 2, etc. appropriately)

· Tag image files with “alt text” within Word

· Use Acrobat Pro 7.0 or later to create a “tagged PDF” file

· Many PDF-to-HTML conversion tools are available

· Refer to www.webaim.org/techniques/acrobat for further information

Accessible JavaScript

JavaScript content and functionality must be made accessible to assistive technologies; pages must be fully navigable via the keyboard.

To make JavaScript accessible:

· Use object detection (find out if a particular object or method is supported before you use it) and provide a fallback if the object is not available

· Use device-independent handlers (does not require the use of a mouse)

To avoid causing confusion, do not modify or override normal browser functionality (by altering the function of the “Back” button, for example). Pages should "transform gracefully" if JavaScript is not present (or not fully present). If native accessibility cannot be achieved, provide alternative content.

Accessible Flash  

The latest version of Flash (MX) gives developers the ability to create Flash animations that include a sound glossary, automatically adapt to the presence of screen reader technology, and enable:

· Keyboard navigation

· An accessibility menu

· A visitor to enlarge text and other content, pause movement, and turn off background sounds

· Refer to www.webaim.org/techniques/flash/ 

Module 8. Resources

Objectives

At the completion of this module, you will be able to:

· Use the Web Accessibility Resources website created by Design Media

· Link to the State of California 508 forums

Link to online resources for XHTML and CSS

List of Resources, by Category

WCAG Conformance

· W3C WAI recommendations

· www.w3.org/TR/WAI-WEBCONTENT
· Details of WCAG checklists and how to implement them

· http://www.w3.org/TR/WCAG10/full-checklist.html
Section 508 Compliance

· Summary of Section 508 standards 

· http://www.section508.gov/index.cfm?FuseAction=Content&ID=11
The New York Public Library Online Style Guide

· Excellent guide to adopting standards-based markup 

· www.nypl.org/styleguide/index.html
Code Evaluation

· W3C’s HTML validation service 

· http://validator.w3.org
· W3C CSS validation service 

· http://jigsaw.w3.org/css-validator
· W3C WAI (Web Accessibility Initiative) offers a complete list of Web accessibility evaluation tools

·  http://www.w3.org/WAI/ER/tools/complete 

· See also

· http://www.w3.org/WAI/eval/selectingtools
Techniques for Creating Accessible Sites

· www.webaim.org/techniques/acrobat 

· www.webaim.org/techniques/flash/
· http://www.webaim.org/techniques/forms/controls.php
· http://webaim.org/techniques/forms/screen_reader.php   

· http://diveintoaccessibility.org/examples/notabletrick.html
· http://diveintoaccessibility.org/day_11_skipping_over_navigation_links.html
Module 9. Summary 

Objectives

At the completion of this module, you will be able to:

· List the key points of the training

Identify specific steps you will take to bring your websites into compliance

Key Points of Today’s Training

· California has adopted accessibility standards for State websites

· Section 508 1194.22 and WCAG Double-A 

· XHTML and CCS are tools for standards-based markup

· Resources are available to help you make websites accessible

· Online validation tools do not take the place of user community testing and developer judgment

· Accessible design makes Web access easier for all users

Eating the Elephant

At this point you probably feel overwhelmed by the amount of work required to bring your site fully into compliance with California’s Web accessibility requirements. This is understandable. But don’t worry! It is not necessary to do this all at once. You don’t have to “eat the elephant” in one gulp!

Small Bites

To make the elephant easier to get down, one suggestion would be to eat it in small bites. Start by committing today to writing good, clean, structurally sound XHTML from here on out. “Starting tomorrow, every page I touch will be brought into compliance with XHTML 1.0 Strict requirements.”

This will go a long way towards making your site more accessible. 

The Elephant is Smaller Than You Think

In the DOR Web Accessibility Quick Reference, you’ll notice that the requirements are organized into categories like “Scripting” and “Frames.” Well, if your site doesn’t use frames, you get to ignore those requirements! That elephant just got a little bit smaller!

But What About My Non-Standard Templates?

Many State web sites of course use older “legacy” templates that you may not have any control over. No worries! Your job is to make sure that no poorly marked-up content goes into those templates! 

· Make a “test” template that is an empty page with an XHTML 1.0 Strict DOCTYPE and the standard <html> and <body> tags 

· Copy and paste just your content into this test template and use the W3C validator to make sure that it validates perfectly! Once it does, simply copy and paste it back into the “legacy” template for your site

In this way, when the new accessible templates become available, your content will be ready to go!

Section 508

Now that you’ve got clean XHTML to work with, tackle just one page or perhaps one section of your site and bring it into compliance with Section 508. I would suggest tackling the most popular or most used sections of your site first. You can easily determine this by looking at your site statistics.

Set a goal for yourself of gradually bringing your content into compliance within three months or six months or whatever makes sense for you and your team.

Level A and Double-A Conformance

At this point, you may have one or more sections of your site that are in compliance with Section 508. Go head and tackle Level A compliance. Once that is complete, then you can set your sights on Double-A compliance.

Daily Practice

In the end, these new techniques will become part of your daily practice and will be as natural part of your thought process as the alt attribute.

Action Plan

Two things I plan to do to bring my own website into compliance:


1.


2.

By what date:

Resources I need or will use to take these actions:

NOTES:

5





47





45





43





39





27





15





9





7











