State of California

Department of Rehabilitation

E&IT WEB ACCESSIBILITY TRAINING

Level Two

Participant Guide

	Table of Contents: Day 1
	

	Module 1. Welcome/Introduction
	

	Module 2. Section 508—What's It All About?
	

	Module 3. Why We Care
	[image: image19.png][image: image20.png][image: image21.jpg]

	Module 4. Web Content Accessibility Guidelines (WCAG)
	[image: image22.jpg]

	Module 5. Web Accessibility: The Foundation
	[image: image23.jpg]

	Module 6. Section 508 Compliance
	[image: image24.jpg][image: image25.jpg]

	Module 7. Practice: Implementing Section 508
	

	Table of Contents: Day 2
	

	Module 8. WCAG Level A Conformance
	

	Module 9. Practice – Level A
	

	Module 10. Double-A Conformance
	

	Module 11. Practice – Double-A
	

	Module 12. Triple-A Conformance Issues
	

	Module 13. Best Practices
	

	Module 14. Content Redevelopment
	

	Module 15. Resources
	

	Module 16. Summary
	

Module 1. Welcome/Introduction
Introduction

Section 508 of the Rehabilitation Act requires Federal agencies to make their electronic and information technology accessible to people with disabilities. Section 508 has been adopted by the State of California.
Objectives

At the completion of this module, you will be able to:

Describe the purpose of this training

Purpose of the Training

This course is designed to increase your awareness about Web accessibility issues and to provide you with a working knowledge of the Web accessibility requirements set forth under Section 508 of the Rehabilitation Act.

Module 2. Section 508 – What's It All About?

Objectives

At the completion of this module, you will be able to:

· Name examples of accessibility issues addressed in Section 508

· Describe the specific requirements of Section 508, Subpart 1194.22, paragraphs (a) through (p)

Describe examples of accessibility issues involving technology other than the web

508 Subpart B: Technical Standards

· Software Applications and Operating Systems (1194.21)

· Web-based Intranet and Internet Information and Applications (1194.22)

· Telecommunications Products (1194.23)

· Video and Multimedia Products (1194.24)

Self Contained, Closed Products (1194.25)

Non-Web Technologies Impacted by Section 508

· Electronic documents

· Computers

· Telephones

· Copy machines

· Printers, fax machines

· Kiosks

· PDAs

Portable music players

Requirements Set Forth in Subpart 1194.22

	1194.22 Web-based intranet and internet information and Applications

	SUB-PARAGRAPH
	DESCRIPTION

	a) Non-text elements

	Use text equivalents (proper alt, longdescr, title attributes).

	b) Multimedia
	Provide synchronized audio and text captioning for multimedia.

	c) Color

	Do not use color to convey information.

	d) Style sheets

	Organize documents so they may be read without style sheets.

	e) Server-side image maps
	Place hyperlinks that are accessible to people who cannot use a mouse.

	f) Client-side image maps
	Provide client-side image maps instead of server-side image maps whenever possible because they are accessible by keyboard.

	g) Tables

	Clearly label row and column headers.

	h) Tables

	Use markup to associate data cells and header cells in tables with two or more logical levels of row/column headers.

	i) Frames

	Title frames so they can be easily identified and navigated.

	j) Flicker

	Design pages to avoid causing the screen to flicker.

	k) Alternative page

	When compliance cannot be achieved any other way, provide an alternative, compliant page.

	l) Scripting
	On pages that use scripting to display content or create interface elements, use functional text equivalents that can be read by assistive devices.

	m) Applets
	Meet 1194.21 sub-paragraphs (a) through (l) requirements.

	n) Forms
	All controls, information, help, and cues associated with forms that are intended to be completed online must be available to people who use assistive technologies.

	o) Navigation
	Provide users with options so they can skip links that repeat page after page.

	p) Timed responses
	Provide a means for the user to request additional time on operations that time out.

Module 3. Why We Care

Objectives

At the completion of this module, you will be able to:

· Relate to the frustration that visually impaired, hearing impaired, mobility impaired (unable to use keyboard or mouse), or cognitively impaired persons may experience when using the web

Describe several ways a website can be a challenge for persons having a disability

Remember: Using the Web can be a frustrating and incomplete experience for people with any kind of disability—even a temporary one. Assistive technologies, such as screen magnifiers, speech synthesizers, and Braille displays can help. As a web designer, you must be aware of accessibility issues and standards, and design to put content within the reach of people with disabilities.

Module 4. Web Content Accessibility Guidelines (WCAG)

Objectives

At the completion of this module, you will be able to:

· Explain, in broad terms, the meaning of Level A, Double-A, and Triple-A conformance levels.

· Explain what a WCAG 1.0 Checkpoint is and how Checkpoints relate to conformance levels.

Identify where to find information on how to implement WCAG 1.0 guidelines.

WCAG Guidelines

WCAG guidelines explain how to make Web content accessible to people with disabilities. The list of 14 guidelines has checkpoints, prioritized by impact on accessibility. WCAG recognizes three levels of conformance to its guidelines: Levels A, Double-A, and Triple-A.

Level A Definition

Level A conformance means meeting all the highest-priority (Priority 1) checkpoints for all 14 guidelines.

Double-A Definition

Double-A conformance means meeting all the Priority 1 and Priority 2 checkpoints for all 14 guidelines.
Triple-A Definition

Triple-A conformance means meeting all checkpoints (Priority 1, 2, and 3) for all 14 guidelines.

Module 5. Web Accessibility: The Foundation

Objectives

At the completion of this module, you will be able to:

· Describe standards-based markup and why it is important

· Explain the features of XHTML

· Explain the benefits of CSS and how CSS works

· Explain the benefits of Positional CSS over table layout

· Identify online XHTML and CSS resources

· Explain the value of code validation

Identify online validation tools

Importance of Standards-Based Markup

Standards-based markup separates content, structure, and display. This is important because content (the information on a page) must be available to different assistive technologies, and be displayed in various ways to accommodate people having different disabilities. For example, visual content must also be presented non-visually for persons who are blind or visually impaired.

Similarly, structure must be separate from presentation, and clearly indicated as structure, to make it available for interpretation by accessibility technologies.

HTML was originally intended to describe only structure. Earlier versions of HTML did not do a good job of separating content, structure, and display. HTML 4.01 separates display from structure and improves accessibility.

Two important tools for standards-based markup are XHTML and Cascading Style Sheets (CSS).

XHTML

XHTML is a reformulation of HTML as an XML application. It will display in your browser identically to the equivalent HTML. XHTML 1.0 can be seen as a descendant of HTML 4.01, but is technically stricter because of XML's influence. You might want to use XHTML if there is any chance you will need to reprocess your content; for instance, to send it to a PDA. XML's stricter syntax rules make automatic processing of XHTML much easier and cheaper than ordinary HTML.

Cascading Style Sheets (CSS)
Style sheets define display elements for one or more Web pages. CSS is display markup, while XHTML elements are structural (logical organization) markup. Styles are specified once in an external style sheet and only referenced in the HTML document. External style sheets can save you a lot of work: You can make global changes to your site almost instantly by editing the .css file.

"Cascading" means that multiple style sheets can be applied to one Web page. Different media can automatically use different .css files so it is easy to repurpose content.

Doc Types

XHTML uses three document types:

1. Strict—Display is fully separated from content and structure using CSS.

2. Transitional—Permits the use of deprecated tags and attributes in markup for controlling display.

3. Frameset—For pages that establish frames; not relevant to accessibility.

In XHTML code, a document type must be declared via the correct DOCTYPE.

A DOCTYPE includes a full URL (a complete Web address), which tells browsers to render your page in standards-compliant mode, treating your XHTML, CSS, and DOM as you expect them to be treated.

Using an incomplete or outdated DOCTYPE, or no DOCTYPE at all, throws these same browsers into “Quirks” mode, where the browser assumes you’ve written old-fashioned, invalid markup and code per the depressing industry norms of the late 1990s.

In this setting, the browser will attempt to parse your page in backward–compatible fashion, rendering your CSS as it might have looked in Internet Explorer 4, and reverting to a proprietary, browser–specific DOM. (IE reverts to the IE DOM; Mozilla and Netscape 6 revert to who knows what.)

The California State standard is the XHTML 1.0 Strict DOCTYPE:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

Warning: Code the above DOCTYPE exactly as shown! Copy and paste from the World Wide Web Consortium (W3C) site to ensure accuracy.

Note: Some editing tools, like TextMate, will apply the correct DOCTYPE for you automatically, but you have to select the correct one first!

Tag Changes

In XHTML, all tags must be closed. For example, non-empty tags (tags that have content between an opening and closing tag) such as <p> and must be closed using the corresponding </p> and tags.

Empty tags (tags that do not have content between an opening and closing tag) such as and
 must be closed with a trailing forward slash “/”.

Before:

<hr>

After:

<hr />

Note: All tags in XHTML are written in lowercase.

Attribute Changes

All attribute values must be quoted.

Before:

After:

Code Validation

All XHTML code should be checked for conformance to W3C recommendations and other standards. Online validation is available at:

http://validator.w3.org/

Deprecated Features

·
http://webdesign.about.com/od/htmltags/a/bltags_deprctag.htm

Online XHTML Resources

The following are online resources for upgrading to XHTML:

· HTML Tidy http://tidy.sourceforge.net/
· Automated HTML processor

· The New York Public Library Online Style Guide http://www.nypl.org/styleguide/
· Excellent guide to adopting standards-based markup

· QuirksMode.org http://www.quirksmode.org/

· QuirksMode.org is the personal and professional site of Peter-Paul Koch, freelance web developer in Amsterdam, the Netherlands—it contains more than 150 pages with CSS and JavaScript tips and tricks, and is one of the best sources on the WWW for studying and defeating browser incompatibilities

· A List Apart http://www.alistapart.com/

· A List Apart explores the design, development, and meaning of web content, with a special focus on techniques and benefits of designing with web standards

· The Web Standards Project http://www.webstandards.org/
· The Web Standards Project is a grassroots coalition fighting for standards that ensure simple, affordable access to web technologies for all

CSS

Zen Garden Example http://www.csszengarden.com/
The following two screen shots are of the home page of the Zen Garden website. The only change that has occurred is that the reference to the CSS style sheet has changed, resulting in a dramatic site-wide change in style and layout!

[image: image1.png]
Screen shot 1: Zen Garden, standard CSS

[image: image2.png]
Screen shot 2: Zen Garden, “Mozart” CSS

Why CSS?

Styles were added to HTML 4.0 to solve a problem. Although HTML was to define document structure only, during the browser wars of the late 1990s, Netscape and Microsoft muddied the waters by adding “features” (really hacks) like the and <color> tags. Developers added to the confusion by figuring out that <table> code and 1 pixel transparent GIFs could be used to specify page layout in a fairly precise manner, resulting in the infamous “table hack.”

The W3C stepped in with CSS as part of the HTML 4.0 specification. This allowed developers to once again separate display markup from structural markup.

Referencing CSS

External Style Sheets are stored in .css files and are referenced using the following methods. Both of these methods must be used inside the <head> tag. The @import rule is preferred!

Using the @import rule inside the <style> tag: This method is preferred because older browsers such as NN 4.x do not understand the @import rule and ignore it. Otherwise, it would see the CSS and make a hash of interpreting it.

<style type="text/css">

@import url(./includes/DOR-V1.css);

</style>

Using the <link> tag.

<link rel="stylesheet" type="text/css" href="DOR-V1.css" />

Warning: This method is visible even to older browsers!

Multiple style definitions will cascade into one (successive styles overriding the previous). This is the “Cascading” in “Cascading Style Sheets.”
· Browser default

· External style sheet (.css file)

· Internal style sheet (inside the <head> tag)

· Inline style (inside an XHTML element using the “style” attribute)

Content Rework Example

Before:

<tr>

 <td>

 Lorem ipsum dolor sit amet, consectetuer adipiscing elit, sed diam nonummy nibh euismod tincidunt ut laoreet dolore magna aliquam odio dignissim qui blandit praesent luptatum zzril delenit augue duis dolore te feugait nulla facilisi.

 Cicero

 </td>

</tr>

After:

<div class="mainCopy">

 <div class="subDiv1">

 <p>L orem ipsum dolor sit amet, consectetuer adipiscing elit, sed diam nonummy nibh euismod tincidunt ut laoreet dolore magna aliquam odio dignissim qui blandit praesent luptatum zzril delenit augue duis dolore te feugait nulla facilisi.</p>

 Cicero

 </div>

</div>

Note: In addition to removing all of the tags, etc. and replacing them with styled <div> and tags, we have changed from using the “table hack” for layout to using <div> tags.
CSS Syntax

The Class Selector

In our XHTML rework example above, we assigned CSS “classes” to several tags. We can now apply styles to those classes in exactly the way we assigned a style to the <body> tag. To address a CSS class, refer to it by name, preceded by a “.”, keeping in mind the class name is case sensitive!

. mainDiv {

color: #999;

border: 1px dotted green;

}

Classes are used for style where multiple instances of that style can occur on the same page. For example, if you wanted to apply a style to a group of hyperlinks (your navigation bar for example), you would create a CSS class.

The ID Selector

In our XHTML rework example above, we assigned a CSS “id” to the element applied to the signature. CSS ids are used when only a single instance of that style will occur on a given page. CSS id selectors are addressed by id name, preceded by a “#” (hash) and “.” (period), keeping in mind the class name is case sensitive!

#signature {

font-size: x-small;

font-style: italic;

font-weight: bold;

}

Matters of Size…

To allow content to scale properly when the visitor “zooms in,” sizes should be specified in relative, rather than absolute, units. This is not just a good practice; it is also required for WCAG 1.0 Double-A compliance!

Sizing and scaling is a surprisingly complex subject; one that is often subject to heated debate in the CSS online community. This is partially because of the Web designer community’s desire to have greater control over font display, and partially because the existing solutions are imperfect.

Font Sizing

The W3C recommends using “em” as the relative unit for sizing and defines it as, "the computed value of the 'font-size' property of the element on which it is used. The exception is when 'em' occurs in the value of the 'font-size' property itself, in which case it refers to the font size of the parent element."

In other words, 1em is equal to 100% of the default font for the browser. For most browsers, that’s 16px, which is too large for most designers. To get around this, we generally set the initial font value to something smaller than 1em:

body {

font-size: 1em;

}

h1 {

font-size: 2em;

}

p {

font-size: 1em;

}

The problem with this approach is that if the visitor sets the “text-size” setting in Internet Explorer to “smaller” or “smallest,” the text becomes so small it is unreadable. As Internet Explorer is so popular and the “smaller” text-size setting is a popular one, this is a real problem.
A Recommended Approach

The tiny text problem can be overcome by setting the initial font size to a percentage. When this solution is implemented, the font-size changes between the IE text-size settings do not appear to be as drastic, and we can set a sensible initial text size that will resize to a readable size at “smaller” and “smallest” settings.

body {

 font-size: 100%; /* initial font size specified as percentage */

}

h1 {

 font-size: 2em;

}

p {

 font-size: 1em;

}

Note: The above is an example of a comment in the style sheet. CSS comments start with “/*” and terminate with “*/”. Everything in between the two is ignored. As style sheets can often be quite long, it is recommended that you comment your styles.

Elastic Design

Another benefit of using ems over keywords is that you can use ems to define the dimensions of your entire layout, which will then scale in proportion to the text.

CSS Positioning

The State of California has adopted CSS Positioning as a best practice. In short, this means that the use of the “table hack” to control page layout is no longer accepted practice.

CSS Positioning properties allow you to specify the left, right, top, and bottom position of an element. They also allow you to set the shape of an element, place an element behind another, and to specify what should happen when an element's content is too big to fit in a specified area.

The W3C Box Model

For display purposes, every element in a document is considered to be a rectangular box, which has a content area surrounded by padding, a border, and margins, as illustrated below.

[image: image3.jpg]
From the outer box to the inner box in the above image we have (a) margin, (b) border, (c) padding, and (d) content. Margins, borders, and padding are all optional. For purposes of calculating box position and size they are given a default width of zero unless otherwise specified. Different widths can be set for each side (top, right, bottom, and left) if desired. Margins can even have negative values.

When you specify width or height in CSS, you are specifying the width or height of the outer margin box. (This is not the same as the width and height of the content area if your padding and/or border and/or margins are not zero.)

In converting from a table-based layout, the general idea is to replace the table code that serves as containers for your content with <div> tags. Then, applying CSS Positioning markup, set the position of each <div> tag (using absolute, relative, or float positioning) to lay the page out in the way you wish.

· Absolute Positioning—specifies an absolute position of an element relative to the upper left corner
 of the browser window

· Relative Position—specifies the position of an element relative to its normal position (the position if
 you would have specified no position at all)

· Float—allows text to wrap around an image, among other things

Z-Index—allows you to set the vertical position on the page so that one object may overlap another

CSS Validation

All CSS code should be validated for conformance to W3C recommendations. Online CSS validation is available at: http://jigsaw.w3.org/css-validator/

Online CSS Resources

· CSS Design: Size Matters: www.alistapart.com/stories/sizematters/
· Elastic Design: www.alistapart.com/articles/elastic/
· CSS Positioning at Brainjar.com: www.brainjar.com/css/positioning
· EM Calculator: riddle.pl/emcalc/
Introduction to CSS Layout: www.oreillynet.com/pub/a/javascript/synd/2002/03/01/css_layout.html

Recommended Reading:

· An excellent guide to adopting standards-based markup is The New York Public Library Online Style Guide: www.nypl.org/styleguide/index.html

· Cascading Style Sheets: The Definitive Guide, 2nd Edition, by Eric Meyer. O’Reilly Publishing

Module 6. Section 508 Compliance
Objectives

At the completion of this module, you will be able to:

Explain the meaning of each 1194.22 element

Explain how to implement each 1194.22 element

1194.22 Elements

a) Non-text elements—Images, animations, audio, and video require text equivalents.

Use "alt" with descriptive text. In the After example, elolivo.html contains a text description of the image.

Before:

After:

Warning: The longdesc tag does not work in all browsers. As an alternative, a simple hyperlink to the long description can also be supplied in the image caption, for example.

b) Multimedia—Provide synchronized audio and text captioning of multimedia.

For further information on implementing this Checkpoint, refer to the W3C document “Techniques for WCAG 1.0.” http://www.w3.org/TR/2000/NOTE-WCAG10-TECHS-20001106/
c) Color—Do not use color to convey information.

Before:

All red fields are required

<label style=”color: red;”>First Name</label>

After:

All bold fields are required
<label style=”color: red; font-weight: bold;”>First Name</label>

[Ed. - Note that this is not a great solution either because it uses visual styling. A better solution would be to mark required fields with an asterisk.]

d) Style sheets—Organize documents so they may be read without style sheets.

· Structure your document logically. Use XHTML to describe structure, not for layout or visuals!

· Use JavaScript alternatives like the <noscript> tag.

· Hide CSS from older browsers.

Using JavaScript alternatives: the <noscript> tag.

<script type="text/javascript" src="myScript.js" />

<noscript>

Alternative html here. You can put entire layouts here if you need to.

</noscript>

e) Server-side image maps—Place hyperlinks that are accessible to people who cannot use a mouse.

Provide an alternative list of image-map choices and indicate the existence and location of the alternative list (e.g., via the "alt" attribute).
Before:

After:

[Reference]

[Audio Visual Lab]

f) Client-side image maps—Provide client-side image maps instead of server-side image maps whenever possible because they are accessible by keyboard.
[image: image4.jpg]
Before: Server-Side Map

After: Client-Side Map:

<object data="navbar1.gif" type="image/gif" usemap="#myMap">

<map name="myMap">

 <p>Navigate the site</p>

 [<a href="guide.html" shape="rect"

 coords="0,0,118,28">Access Guide]

 [<a href="shortcut.html" shape="rect"

 coords="118,0,184,28">Go]

 [<a href="search.html" shape="circle"

 coords="184.200,60">Search]

 [<a href="top10.html" shape="poly"

 coords="276,0,276,28,100,200,50,50,276,0">

 Top Ten]

</map>

</object>

g) Tables: Row and column headers—Associate data cells with their corresponding row and column labels clearly.

This example shows how to associate data cells (created with TD) with their corresponding
headers by means of the "headers" attribute. The "headers" attribute specifies a list of header cells (row and column labels) associated with the current data cell. This requires each header cell to have an "id" attribute. The resulting table looks like this:

Cups of coffee consumed by each assemblyman

	Name
	Cups
	Type of Coffee
	Sugar?

	M. Leno
	10
	Espresso
	No

	J. Dinnen
	5
	Decaf
	Yes

A speech synthesizer might render this table as follows:

Caption: Number of cups of coffee consumed by each senator.

Summary: This table charts the number of cups of coffee consumed by each senator, the type of coffee (decaf or regular), and whether taken with sugar.

Name:
M. Leno, Cups: 10, Type: Espresso, Sugar: No

Name:
J. Dinnen, Cups: 5, Type: Decaf, Sugar: Yes

Before:

<table class="myTable">

<tr>

 <td>Name</td>

 <td>Cups</td>

 <td>Type of Coffee</td>

 <td>Sugar?</td>

</tr>

<tr>

 <td>M. Leno</td>

 <td>10</td>

 <td>Espresso</td>

 <td>No</td>

</tr>

<tr>

 <td>J. Dinnen</td>

 <td>5</td>

 <td>Decaf</td>

 <td>Yes</td>

</tr>

</table>

After:

<table class="myTable"

summary="This table charts the number of

 cups of coffee consumed by each assemblyman,

 the type of coffee (decaf or regular),

 and whether taken with sugar.">

<caption>Cups of coffee consumed by each assemblyman</caption>

<tr>

 <th id="name">Name</th>

 <th id="cups">Cups</th>

 <th id="type" abbr="Type">Type of Coffee</th>

 <th id="sugar">Sugar?</th>

</tr>

<tr>

 <td headers="name">M. Leno</td>

 <td headers="cups">10</td>

 <td headers="type">Espresso</td>

 <td headers="sugar">No</td>

</tr>

<tr>

 <td headers="name">J. Dinnen</td>

 <td headers="cups">5</td>

 <td headers="type">Decaf</td>

 <td headers="sugar">Yes</td>

</tr>

</table>

[Ed. – For simple two-dimensional tables like this, it is easier to use the “scope” attribute. More complex tables however require the solution shown above.]

h) Tables—Two or more logical levels of row/column headers: use markup to associate data cells and header cells.

The following example shows how to create categories within a table using the "axis" attribute. The axis attribute may be used to place cells into conceptual categories that can be considered to form axes in a two-dimensional table.
<table class="myTable">

 <caption>Travel Expense Report</caption>

 <tr>

 <th></th>

 <th id="header2" axis="expenses">Meals</th>

 <th id="header3" axis="expenses">Hotels</th>

 <th id="header4" axis="expenses">Transport</th>

 <th>subtotals</td>

</tr>

 <tr>

 <th id="header6" axis="location">San Jose</th>

 <th></th><th></th><th></th><th></th>

</tr>

 <tr>

 <td id="header7" axis="date">25-Aug-97</td>

 <td headers="header6 header7 header2">37.74</td>

 <td headers="header6 header7 header3">112.00</td>

 <td headers="header6 header7 header4">45.00</td>

 <td></td>

</tr>

 <tr>

 <td id="header8" axis="date">26-Aug-97</td>

 <td headers="header6 header8 header2">27.28</td>

 <td headers="header6 header8 header3">112.00</td>

 <td headers="header6 header8 header4">45.00</td>

 <td></td>

</tr>

 <tr>

 <td>subtotals</td>

 <td>65.02</td>

 <td>224.00</td>

 <td>90.00</td>

 <td>379.02</td>

</tr>

 <tr>

 <th id="header10" axis="location">Seattle</th>

 <th></th><th></th><th></th><th></th>

</tr>

 <tr>

 <td id="header11" axis="date">27-Aug-97</td>

 <td headers="header10 header11 header2">96.25</td>

 <td headers="header10 header11 header3">109.00</td>

 <td headers="header10 header11 header4">36.00</td>

 <td></td>

</tr>

 <tr>

 <td id="header12" axis="date">28-Aug-97</td>

 <td headers="header10 header12 header2">35.00</td>

 <td headers="header10 header12 header3">109.00</td>

 <td headers="header10 header12 header4">36.00</td>

 <td></td>

</tr>

 <tr>

 <td>subtotals</td>

 <td>131.25</td>

 <td>218.00</td>

 <td>72.00</td>

 <td>421.25</td>

</tr>

 <tr>

 <th>Totals</th>

 <td>196.27</td>

 <td>442.00</td>

 <td>162.00</td>

 <td>800.27</td>

</tr>

</table>

A browser would render this table as follows:

	
	Meals
	Hotels
	Transport
	Subtotals

	San Jose
	
	
	
	

	25-Aug-97
	37.74
	112.00
	45.00
	

	26-Aug-97
	27.28
	112.00
	45.00
	

	Subtotals
	65.02
	224.00
	90.00
	379.02

	Seattle
	
	
	
	

	27-Aug-97
	96.25
	109.00
	36.00
	

	28-Aug-97
	35.00
	109.00
	36.00
	

	Subtotals
	131.25
	218.00
	72.00
	421.25

	Totals
	196.27
	442.00
	162.00
	800.27

i) Frames—Title frames so they can be navigated easily.

Frames are discouraged for usability reasons, but if you must use them, use the following title markup:

Before:

<FRAMESET cols="10%, 90%">

 <FRAME src="nav.html">

 <FRAME src="doc.html">

 <NOFRAMES>

 electronic library

 </NOFRAMES>

</FRAMESET>

After:

<frameset cols="10%, 90%"

 title="Our library of electronic documents">

 <frame src="nav.html" title="Navigation bar">

 <frame src="doc.html" title="Documents">

 <noframes>

 electronic library

 </noframes>

</frameset>
j) Flicker—Design pages to avoid causing the screen to flicker. Flicker at certain frequencies can trigger seizures in some people.

For further information on implementing this Checkpoint, refer to the W3C document “Techniques for WCAG 1.0.” http://www.w3.org/TR/2000/NOTE-WCAG10-TECHS-20001106/
k) Alternative page—When compliance cannot be achieved any other way, provide an alternative, compliant page.
For further information on implementing this Checkpoint, refer to the W3C document “Techniques for WCAG 1.0.” http://www.w3.org/TR/2000/NOTE-WCAG10-TECHS-20001106/
l) Scripting—On pages that use scripting to create content or elements, provide accessible text equivalents for the information provided by the scripts.

Use the <noscript> tag to implement this.

<script type="Javascript">

...some javascript to show a billboard of sports scores...

</script>

<noscript>

<p>Results from yesterday’s games:</p>

<dl>

 <dt>Bulls 91, Sonics 80.</dt>

 <dd>Bulls vs. Sonics game highlights</dd>

</dl>

</noscript>

m) Applets—Embedded applets must meet 508 § 1194.21 standards (most of which pertain to accessibility by people with vision impairments).

For further information on implementing this Checkpoint, refer to the W3C document “Techniques for WCAG 1.0.” http://www.w3.org/TR/2000/NOTE-WCAG10-TECHS-20001106/
n) Forms—All controls, information, help, and cues associated with forms that are intended to be filled in online must be available to those using assistive technologies to complete the form.

Lay out the form logically so that it can be navigated easily with the [tab] key; use the <label> tag appropriately; group related fields using the <fieldset> tag.

<label for="name">Name</label>

<input id="name" type="text" name="textfield">

<fieldset>

<legend>Choose a color:</legend>

<input id="blue" type="checkbox" name="checkbox" value="checkbox"> <label for="blue">Blue</label>

<input id="green" type="checkbox" name="checkbox2" value="checkbox"> <label for="green">Green</label>

<input id="yellow" type="checkbox" name="checkbox3" value="checkbox">

<label for="yellow">Yellow</label>

</fieldset>

o) Navigation—Provide users with an option to skip links that repeat page after page.
[image: image5.jpg]
[image: image6.png]
p) Timed responses—Allow users to request additional time for operations that time out.

For further information on implementing this Checkpoint, refer to the W3C document “Techniques for WCAG 1.0.” http://www.w3.org/TR/2000/NOTE-WCAG10-TECHS-20001106/
Section 508 Code Validation

· Just because your page has “passed” a code validation checker (like Bobby), doesn’t mean that the page is accessible

· Validation checkers have limitations due to the inherently subjective nature of Section 508 requirements

· Personally evaluate your response to each Section 508 requirement in addition to using validation tools

Validation Techniques

· Be sure your XHTML and CSS validate first!

· Validate with an automated checker like Bobby to catch the easy things like alt attributes

· Use a variety of browsers and assistive technologies like JAWS

· Try using your site without a mouse

· Involve your user community where possible

Validation Tools

· www.w3.org/WAI/ER/tools/

Module 7. Practice: Implementing Section 508

Objectives

At the completion of this module, you will be able to:

· Identify elements in your own websites that are not in compliance with Section 508

· Explain what steps you took to implement specific elements of 1194.22 to correct your websites

Explain why you took the steps you did

Worksheet/Checklist

Identify what needs to be changed on your website. Refer to the list of elements on page 8 for more information.

	1194.22 element
	what needs to be changed on your website

	a) Non-text elements
	

	b) Multimedia
	

	c) Color
	

	d) Style sheets
	

	e) Image maps
	

	f) Image maps
	

	g) Tables

	

	h) Tables

	

	i) Frames

	

	j) Flicker

	

	k) Alternative page

	

	l) Scripting
	

	m) Applets
	

	n) Forms
	

	o) Navigation
	

	p) Timed Responses
	

Worksheet/Checklist

Identify what needs to be changed on your partner's website. Refer to the list of elements on page 8 for more information.

	1194.22 element
	what you found on your partner’s website

	a) Non-text elements

	

	b) Multimedia
	

	c) Color

	

	d) Style sheets

	

	e) Image maps

	

	f) Image maps

	

	g) Tables

	

	h) Tables

	

	i) Frames

	

	j) Flicker

	

	k) Alternative page

	

	l) Scripting
	

	m) Applets
	

	n) Forms
	

	o) Navigation
	

	p) Timed responses
	

Module 8. WCAG Level A Conformance

Objectives

At the completion of this module, you will be able to:

· Explain the basic difference between 508 compliance and Level A conformance

· Explain the meaning of most Level A requirements

Explain how to implement most Level A requirements

WCAG 1.0 Level A (Priority 1)

WCAG 1.0 Level A requires compliance with all WCAG 1.0 Priority 1 Checkpoints. If a site is already in compliance with Section 508 1194.22 sub-paragraphs a) through k), then only the following six additional WCAG Priority 1 Checkpoint requirements must be fulfilled to achieve WCAG 1.0 Level A compliance.

The following list is in addition to the Priority 1 Checkpoints already covered under Section 508 1194.22 sub-paragraphs a) through k). Note that Section 508 1194.22 sub-paragraphs l) through p) do not correspond to any WCAG 1.0 Checkpoint.

Level A Checkpoints

	Checkpoint
	requirement

	1.3
	Until user agents can automatically read aloud the text equivalent of a visual track, provide an auditory description of the important information of the visual track of a multimedia presentation.

	4.1
	Clearly identify changes in the natural language of a document's text and any text equivalents (e.g., captions).

	6.2
	Ensure that equivalents for dynamic content are updated when the dynamic content changes.

	6.3
	Ensure that pages are usable when scripts, applets, or other programmatic objects are turned off or not supported. If this is not possible, provide equivalent information on an alternative accessible page.

	8.1
	Make programmatic elements, such as scripts and applets, directly accessible or compatible with assistive technologies.

	14.1
	Use the clearest and simplest language appropriate for a site's content.

Module 9. Practice – Level A

Objectives

At the completion of this module, you will be able to:

· Describe Level A problem areas you found on your websites

· Explain what steps you took (or can take) to correct the problems

Explain why you took (or would take) these steps

Worksheet/Checklist

Identify what needs to be changed on your website.

	Level A item
	what you found on your website

	1.3 Provide an auditory description of the important information in the visual track of a multimedia presentation.
	

	4.1 Clearly identify changes in the natural language of a document's text and any text equivalents (e.g., captions).
	

	6.2 Ensure that equivalents for dynamic content are updated when the dynamic content changes.
	

	6.3 Ensure that pages are usable when scripts, applets, or other programmatic objects are turned off or not supported.
	

	8.1 Make programmatic elements such as scripts and applets directly accessible or compatible with assistive technologies
	

	14.1 Use the clearest and simplest language appropriate for a site's content.
	

Worksheet/Checklist

Identify what needs to be changed on your partner's website.

	Level A item
	what you found on your PARTNER'S website

	1.3 Provide an auditory description of the important information in the visual track of a multimedia presentation.
	

	4.1 Clearly identify changes in the natural language of a document's text and any text equivalents (e.g., captions).
	

	6.2 Ensure that equivalents for dynamic content are updated when the dynamic content changes.
	

	6.3 Ensure that pages are usable when scripts, applets, or other programmatic objects are turned off or not supported.
	

	8.1 Make programmatic elements such as scripts and applets directly accessible or compatible with assistive technologies
	

	14.1 Use the clearest and simplest language appropriate for a site's content.
	

Module 10. Double-A Conformance

Objectives

At the completion of this module, you will be able to:

· Explain the basic difference between Level A and Double-A conformance

· Explain the meaning of most Double-A requirements

Explain how to implement Double-A requirements

Double-A Checkpoints

2.2 Color—Ensure that foreground and background color combinations of images provide sufficient contrast when viewed by someone having color deficits or when viewed on a black and white screen. [Priority 2 for images (Double-A), Priority 3 for text (Triple-A).]

For images that provide important information (i.e., images that are not simply provided as eye candy), ensure that there is sufficient contrast to allow the visitor to discern that information.

Online tools are available to allow Web developers and designers to simulate various vision problems and to assist them with making design decisions.

3.1 Markup—When an appropriate markup language exists, use markup rather than images to convey information.

Using markup (and style sheets) where possible rather than images promotes accessibility for the following reasons:

· Text may be magnified or interpreted as speech or Braille

· Search engines can use text information

[image: image7.jpg]
Before: We would have to use an image to display a simple mathematical equation such as:

[image: image8.png]
After: We can use MathML to create the equation as text. This makes your pages lighter and more accessible to assistive technologies and search engines.

<semantics>

 <reln>

 <eq/>

 <ci>A</ci>

 <matrix>

 <matrixrow>

 <ci>x</ci>

 <ci>y</ci>

 </matrixrow>

 <matrixrow>

 <ci>z</ci>

 <ci>w</ci>

 </matrixrow>

 </matrix>

</reln>

</semantics>

3.2 Markup—Create documents that validate to published formal grammars.

Use the correct DOCTYPE! Validate your XHTML and CSS code!

The California State standard is the XHTML 1.0 Strict DOCTYPE:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

3.3 Markup—Use style sheets to control layout and presentation.

Separate a document’s structure from its presentation by using CSS. To determine if content is structural or presentational, create an outline of your document. Each point in the hierarchy denotes a structural change. Use structural markup to indicate these changes and presentational markup to make them more apparent visually and aurally. Notice that horizontal rules will not appear in this outline and, therefore, are not structural, but presentational.

Note: This technique addresses chapter, section, and paragraph structure. To determine structure within phrases, look for abbreviations, changes in natural language, definitions, and list items.

3.4 Markup—Use relative rather than absolute units in markup language attribute values and style sheet property values.

To allow content to scale properly when the visitor “zooms in,” sizes should be specified in relative, rather than absolute units. This is not just a good practice, it is also required for WCAG 1.0 Double-A compliance!

Sizing and scaling is a surprisingly complex subject, one that is often subject to heated debate in the CSS online community. This is partially because of the Web designer community’s desire to have greater control over font display, and partially because the existing solutions are imperfect.

Font Sizing The W3C recommends using “em” as the relative unit for sizing. The “em” unit is defined as: "the computed value of the 'font-size' property of the element on which it is used. The exception is when 'em' occurs in the value of the 'font-size' property itself, in which case it refers to the font size of the parent element."

In English, that means that 1em is equal to 100% of the default font for the browser. For most browsers, that’s 16px, which is too large for most designers. We do love our tiny fonts, don’t we? To get around this, we generally set the initial font value to something smaller than 1em.

[image: image9.jpg]
The following example creates accessibility issues.

body {

 font-size: 1em;

}

h1 {

 font-size: 2em;

}

p {

 font-size: 1em;

}

The fix is using relative units, as follows.

body {

 font-size: 100%; /* initial font size specified as percentage */

}

h1 {

 font-size: 2em;

}

p {

 font-size: 1em;

}

The tiny text problem can be overcome by setting the initial font size to a percentage. When this solution is implemented, the font-size changes between the IE text-size settings do not appear to be as drastic, and we can set a sensible initial text size that will resize to a readable size at “smaller” and “smallest” settings.

Note: The above example includes a comment in the style sheet. CSS comments start with “/*” and terminate with “*/”. Everything in between the two is ignored. As style sheets can often be quite long, it is recommended that you comment your styles.

Another benefit of using ems over keywords is that you can use ems to define the dimensions of your entire layout, which will then scale in proportion to the text.
3.5 Markup—Use header elements to convey document structure and use them according to specification.

Since some users skim through a document by navigating its headings, it is important to use them appropriately to convey document structure. Users should order heading elements properly. For example, in HTML, H2 elements should follow H1 elements, H3 elements should follow H2 elements, etc. Content developers should not "skip" levels (e.g., H1 directly to H3).

Do not use headings to create display effects; use style sheets for this purpose.

[image: image10.jpg]
<head>

 <title>Cooking Techniques</title>

 <style type="text/css">

div.section2 { margin-left: 5% }

 </style>

</head>

<body>

 <h1>Cooking Techniques</h1>

 <p>... some text here ...</p>

 <div class="section2">

<h2>cooking with oil</h2>

<p>... text of the section ...</p>

 </div>

 <div class="section2">

<h2>cooking with butter</h2>

<p>... text of the section ...</p>

 </div>

3.6 Markup—Markup lists and list items properly.

The HTML list elements DL, UL, and OL should only be used to create lists, not for formatting effects such as indentation.

Ordered lists help non-visual users navigate. Non-visual users may get lost in lists, especially in nested lists and those that do not indicate the specific nest level for each list item. Until user agents provide a means to identify list context clearly (e.g., by supporting the "before"• pseudo-element in CSS2), content developers should include contextual clues in their lists.

[image: image11.jpg]
For numbered lists, compound numbers are more informative than simple numbers. Thus, a list numbered "1, 1.1, 1.2, 1.2.1, 1.3, 2, 2.1," provides more context than the same list without compound numbers, which might be formatted as below, and would be spoken as "1, 1, 2, 1, 2, 3, 2, 1", conveying no information about list depth.

1.

1.

2.

1.

3.

2.

1.

CSS allows developers to control number styles (for all lists, not just ordered) through user style sheets. The following CSS2 style sheet example shows how to specify compound numbers for nested lists created with either UL or OL elements. Items are numbered as "1", "1.1", "1.1.1", etc.

<style type="text/css">

 ul, ol { counter-reset: item }

 li { display: block }

 li:before { content: counters(item, "."); counter-increment: item }

</style>

3.7 Markup—Mark up quotations. Do not use quotation markup for formatting effects such as indentation.
Do not use the <blockquote> tag for indentation. Use a styled <div> tag, for example, for indentation. Reserve the <blockquote> tag for quotations. In other words, use structural markup for structure and display markup for visuals.

[image: image12.jpg]
<blockquote cite="http://www.example.com/loveslabourlost">

 <p>Remuneration! O! that’s the Latin word for three farthings.

 --- William Shakespeare (Love’s Labor Lost).

 </p>

</blockquote>

5.3 Tables—Do not use tables for layout unless the table makes sense when it is linearized. Otherwise, if the table does not make sense, provide an alternative equivalent (which may be a linearized version).

Some older screen readers don't understand word wrapping and read through table cells line by line, like you might read a page in a book. When two cells are side by side on a Web page, the screen reader would read the first line of Cell 1, the first line of Cell 2, the second line of Cell 1, and so on.

You can check to see if an existing layout table is linearized by using the WAVE validation checker: http://dev.wave.webaim.org/index.jsp. This will list the table cells numerically, in the order they are read.

Hint: To get a better understanding of how a screen reader would read a table, run a piece of paper down the page and read your table line by line.

Preferred Approach: Eliminate the use of tables for layout. Tables should properly be used only for displaying rows and columns of data that have a logical relationship to one another.

Eliminating tables for layout means adopting CSS Positioning for layout. This is another method of separating document display markup from document structure. Detailed coverage of CSS Positioning is beyond the scope of this course.

5.4 Tables—If a table is used for layout, do not use any structural markup for the purpose of visual formatting.

This simply means that if you have used a table for layout, do not use the <th> tag (to get bold, centered text). Using a <th> tag can fool a screen reader into thinking it is inside a data table. There are other structural table tags of course, but this is the only example that is typically used for visual formatting.

6.4 Transformation—Ensure that event-handlers are device-independent.

An event handler is a script that is invoked when a certain event occurs (e.g., the mouse moves, a key is pressed, the document is loaded, etc.). In HTML 4.01, event handlers are attached to elements via event handler attributes (the attributes beginning with "on", as in "onkeyup").

Some event handlers, when invoked, produce purely decorative effects such as highlighting an image or changing the color of an element's text. Other event handlers produce much more substantial effects, such as carrying out a calculation, providing important information to the user, or submitting a form. For event handlers that do more than just change the presentation of an element, content developers should use device-independent event triggers like "onfocus," "onblur," “onchange.”

If you must use device-dependent attributes, provide redundant input mechanisms (i.e., specify two handlers for the same element):

6.5 Transformation—Ensure that dynamic content is accessible, or provide an alternative presentation or page.

Content that changes or scrolls off-screen, for example, must have an accessible alternative available. If possible, avoid using this sort of moving content.

7.2 Timing—Until user agents allow users to control blinking, avoid causing content to blink (i.e., change presentation at a regular rate, such as turning on and off).

Blinking or flashing content should be avoided if at all possible.

Note: The BLINK and MARQUEE elements are not defined in any W3C HTML specification and should not be used.

7.3 Timing—Until user agents allow users to freeze moving content, avoid movement in pages.

The key word here is “content." If content that is conveying important information is moving, it can present a challenge for some users. Because user agents do not include, as yet, a “freeze movement” option, avoid creating important content that moves.

7.4 Timing—Until user agents provide the ability to stop the refresh, do not create periodically auto-refreshing pages.

Content developers sometimes create pages that refresh or change without the user requesting the refresh. This automatic refresh can be very disorienting to some users. Instead, in order of preference, authors should:

· Configure the server to use the appropriate HTTP status code (301). Using HTTP headers is preferable because it reduces internet traffic and download times, it may be applied to non-HTML documents, and it may be used by agents who requested only a HEAD request (e.g., link checkers). Also, status codes of the 30x type provide information such as "moved permanently" or "moved temporarily" that cannot be given with META refresh.

· Replace the page that would be redirected with a static page containing a normal link to the new page.

7.5 Timing—Until user agents provide the ability to stop auto-redirect, do not use markup to redirect pages automatically. Instead, configure the server to perform redirects.

Avoid using markup to implement redirection. Redirection should be implemented server-side.

[image: image13.jpg]
Before:

<meta http-equiv="refresh" content="0;url=http://www.mynewurl.com" />

After: Server configured to properly redirect traffic.

9.2 Device-independence—Ensure that any element that has its own interface can be operated in a device-independent manner.

For example, if you have a Java applet embedded in your page, ensure that it uses device-independent events (e.g., does not depend on a mouse).

9.3 Device-independence—For scripts, specify logical event handlers rather than device-dependent event handlers.

An event handler is a script that is invoked when a certain event occurs (e.g, the mouse moves, a key is pressed, the document is loaded, etc.). In HTML 4.01, event handlers are attached to elements via event handler attributes (the attributes beginning with "on", as in "onkeyup").

10.1 Interim solutions—Until user agents allow users to turn off spawned windows, do not cause pop-ups or other windows to appear and do not change the current window without informing the user.
Avoid using pop-ups or causing new windows to appear. Do not change the current window without informing the user. Visitor-initiated new windows or window refresh is OK. Auto-initiated new windows or window refresh is not.

10.2 Interim solutions—Until user agents support explicit associations between labels and form controls, for all form controls with implicitly associated labels, ensure that the label is properly positioned.

A label is implicitly associated with its form control either through markup or positioning on the page. The following example shows how a label and form control may be implicitly associated with markup.

[image: image14.jpg]
Use the <label> tag to give a field a context-relevant name. Place field labels near and to the left of each field so the screenreader reads them consecutively, creating an auditory association between them.

Note: Use the <tabindex> attribute to create a logical tab order to the entry fields.

<label for="firstname">First name:</label><input type="text" id="firstname" tabindex="1" />

11.1 Standards—Use W3C technologies when they are available and appropriate for a task and use the latest versions when supported.

WCAG 1.0 suggests using W3C technologies since they have been reviewed for accessibility issues and, therefore, have accessibility features built in.

Current W3C technologies include:

· HTML, XHTML, XML for structured documents

· MathML for mathematical equations

· RDF (Resource Description Framework) for metadata

· SMIL to create multimedia presentations

· CSS and XSL to define style sheets

· XSLT to create style transformations

· PNG for graphics (although some are best expressed in JPG, a non-W3C spec)

11.2 Standards—Avoid deprecated features of W3C technologies.
Avoid using deprecated tags and attributes. For example, the tag and the “name” attribute are now deprecated. Remember, your code will not validate as XHTML 1.0 Strict if you use deprecated features! For a complete list of deprecated tags and attributes, refer to the list of Deprecated Elements and Attributes at: http://webdesign.about.com/od/htmltags/a/bltags_deprctag.htm
12.2 Context—Describe the purpose of frames and how frames relate to each other if it is not obvious by frame titles alone.

[image: image15.jpg]
Using frameset-desc.html

#Navbar—this frame provides links to the major sections of the site: World News, National News, Local News, Technological News, and Entertainment News

#Story—this frame displays the currently selected story

#Index—this frame provides links to the day's headline stories within this section

Remember to update the frameset description if the content of the frames changes!

<frameset rows="20%,*">

 <frame src="promo.html" name="promo" title="promotions" />

 <frame src="sitenavbar.html" name="navbar"

 title="Sitewide navigation bar" longdesc="frameset-desc.html#navbar" />

</frameset>

<frameset rows="*,20%">

 <frame src="headlines.html" name="index" title="Index of other

 national headlines" longdesc="frameset-desc.html#headlines" />

 <frame src="ad.html" name="adspace" title="Advertising" />

</FRAMESET>

12.3 Context—Divide large blocks of information into more manageable groups where natural and appropriate.

· Break up lines of text into paragraphs with the <p> element

· Use <fieldset> to group form controls into semantic units and describe the group with the <legend> element

· Use <optgroup> to organize long lists of menu options into smaller groups

· Use tables for tabular data and describe the table with <caption>

· Group table rows and columns with <thead>, <tbody>, <tfoot>, and <colgroup>

· Nest lists with , , and <dl>

· Use section headings <h1> through <h6> to create structured documents, identify key ideas or concepts, and break up long stretches of text

Group related links

All of these grouping mechanisms should be used when appropriate and natural, i.e., when the information lends itself to logical groups. Content developers should not create groups randomly, as this will confuse all users.

12.4 Context—Associate labels explicitly with their controls.

[image: image16.jpg]
Building on the above example for Checkpoint 10.2:

<label for="firstname">First name:

 <input type="text" id="firstname" tabindex="1" />

</label>

Note that the <label> element is now wrapped around the <input> element.

Warning: The values of the “for” and “id” attributes must match exactly!

13.1 Navigation—Clearly identify the target of each link

Good link text should not be overly general; don't use "click here." Not only is this phrase device-dependent (it implies a pointing device), it says nothing about what is to be found if the link is followed. Link text should indicate the nature of the link target, as in "more information about sea lions" or "text-only version of this page." Note that for the latter case (and other format- or language-specific documents), content developers are encouraged to use content negotiation instead, so that users who prefer text versions will have them served automatically.

In addition to clear link text, content developers may specify a value of the "title" attribute that clearly and accurately describes the target of the link.

If more than one link on a page shares the same link text, all those links should point to the same resource. Such consistency will help page design as well as accessibility.

[image: image17.jpg]
Before:

Click here for more information about dolphins.

After:

More information about dolphins can be found here.

13.2 Navigation—Provide metadata to add semantic information to pages and sites.

The <meta> element can specify metadata for a document including keywords, and information about the author. The <meta> element is a generic mechanism for specifying metadata. However, some HTML elements and attributes already handle certain pieces of metadata and may be used by authors instead of <meta>to specify those pieces: the <title> element, the <address> element, the <ins> and elements, and the title and cite attributes.

[image: image18.jpg]
<meta name="author" content="John Doe" />

<meta name="copyright" content="© 1997 Acme Corp." />

<meta name="keywords" content="corporate,guidelines,cataloging" />

<meta name="date" content="1994-11-06T08:49:37+00:00" />

Note. Metatags provide many features that expose content in numerous ways to various technologies. Refer to online resources for further reading on this subject.
13.3 Navigation—Provide information about the general layout of a site (e.g., a site map or table of contents).

Provide a text-based hierarchical site map or table of contents for your site.

13.4 Navigation—Use navigation mechanisms in a consistent manner.

A consistent style of presentation on each page allows users to locate navigational cues more easily, and to skip navigation devices in order to find important content more easily. This helps people with learning and reading disabilities and also makes navigation easier for all users. Predictability will increase the likelihood that people will find information at your site, or avoid it when they so desire.

Examples of structures that may appear at the same place between pages:

· Navigation bars

· Primary content

· Banners

· Side-bars

Module 11. Practice – Double-A

Objectives

At the completion of this module, you will be able to:

· Describe Double-A issues you found on your websites

Describe how the items identified on the sites could be brought into compliance

Worksheet

	Websites looked at
	Possible Double-A issues

	
	

Module 12. Triple-A Conformance Issues

Objectives

At the completion of this module, you will be able to:

· Explain, in general, what is meant by Triple-A compliance

Describe several Triple-A requirements

Triple-A Checkpoints

1.5—Until user agents render text equivalents for client-side image map links, provide redundant text links for each active region of a client-side image map.

2.2—Ensure that foreground and background color combinations of text provide sufficient contrast when viewed by someone having color deficits or when viewed on a black and white screen. [Priority 2 for images, Priority 3 for text.]

4.2—Specify the expansion of each abbreviation or acronym in a document where it first occurs.

4.3—Identify the primary natural language of a document.

5.5—Provide summaries for tables.

5.6—Provide abbreviations for header labels.

9.4—Create a logical tab order through links, form controls, and objects.

9.5—Provide keyboard shortcuts to important links (including those in client-side image maps), form controls, and groups of form controls.

10.3—Until user agents (including assistive technologies) render side-by-side text correctly, provide a linear text alternative (on the current page or some other) for all tables that lay out text in parallel, word-wrapped columns.

10.4—Until user agents handle empty controls correctly, include default, place-holding characters in edit boxes and text areas.

10.5—Until user agents (including assistive technologies) render adjacent links distinctly, include non-link, printable characters (surrounded by spaces) between adjacent links.

11.3—Provide information so that users may receive documents according to their preferences (e.g., language, content type, etc.)

13.5—Provide navigation bars to highlight and give access to the navigation mechanism.

13.6—Group related links, identify the group (for user agents), and, until user agents do so, provide a way to bypass the group.

13.7—If search functions are provided, enable different types of searches for different skill levels.

13.8—Place distinguishing information at the beginning of headings, paragraphs, lists, etc.

13.9—Provide information about document collections (i.e., documents comprised of multiple pages).

13.10—Provide a means to skip over multi-line ASCII art.

14.2—Supplement text with graphic or auditory presentations where they will facilitate comprehension of the page.

14.3—Create a style of presentation that is consistent across pages.

Module 13. Best Practices

Objectives

At the completion of this module, you will be able to:

Describe several best practices recommended by the State of California IOUCA

List of Best Practices

As adopted by the Portal Steering Committee, July 14, 2006. Reference “IOUCA Accessibility Recommendation Adopted 071406.pdf.

(Note that the numbers below should in no way be confused with WCAG Checkpoint numbers. Rather, they refer to paragraph numbers in the document named above.)

9.c.
Avoid using small images or text as links. [Ref: CA DOR #1]

What:
The size of the "clickable" area of a link is limited to the size of the image or text that makes up the link.

Why:
Mouse-users with limited fine motor control may have difficulty pointing to and clicking on links that are small, especially if the links are close together.

How:
Make sure that images used for links are reasonably large, preferably 32 pixels by 16 pixels or larger. Use standard or enlarged font sizes for text links, and avoid using text links that are shorter than four characters in length. Additionally, avoid placing small links close together.

12.a.
Avoid using frames. [Ref: CA DOR #2 Based on WCAG 10]

What:
Frames are sometimes used inappropriately for formatting and layout. For example, empty frames can be used to create margins around or within a page.

Why:
Screen readers cannot judge whether the content of a frame is significant and must identify every frame for the user. Having to read this extraneous information for non-essential frames can be time consuming and confusing.

How:
Use frames sparingly. If a frame is not necessary for page content, eliminate it.

18.c.
If a downloadable document cannot be provided in an accessible electronic format, provide information on how to request an alternate format. [Ref: CA DOR #3]

What:
In some cases, documents cannot be provided in an accessible electronic format.

Why:
Users with disabilities must still have equivalent access to public documents.

How:
Provide information regarding whom to contact to obtain the document in alternate formats (e.g., Braille, large-print, or audio-cassette). Alternate formats must be available in a timely manner.

19.a.
Provide contact information. [Ref: CA DOR #4]

What:
Contact information should be identified. Contact information should include email, telephone, text telephone (TTY), and mailing address.

Why:
Individuals with disabilities may need to report accessibility problems or request information in an alternate accessible format.

How:
List accessibility contact information on the home page or contact page. Inquiries about accessibility, especially requests for materials in alternate format, need to be handled in a timely manner.

20.a
Test for accessibility. [Ref: CA DOR #5]

What:
Testing includes functional tests with assistive technology, browser and operating system functionality as well as automated testing software.

Why:
Testing will determine whether accessibility has actually been accomplished.

How:
Use browser and operating system accessibility features and leading assistive technology software such as screen readers and magnifiers to test for functional accessibility. Use an automated testing tool to identify common accessibility problems. If possible, do user testing with people with disabilities.

Refer to the companion website for this course for further information.

Module 14. Content Redevelopment

Objectives

At the completion of this module, you will be able to:

Explain why we don't post documents

Name one example of a document conversion tool

Explain some of the issues related to Accessible JavaScript

Explain some of the issues related to Accessible Flash

Posting Documents: Accessibility Issues

Remember, the “native language” of the Web is XHTML and we should use that wherever possible.

Microsoft Office

Microsoft Office documents (Word, PowerPoint, etc.) are not natively accessible, presenting usability problems to visitors who do not have Microsoft Office software. There are tools available to convert Office documents to "accessible HTML," but such tools can only do so much. It remains the developer's responsibility to check accessibility thoroughly after conversion.

PDFs

Similarly, PDF files require a PDF viewer for access.

· Post PDFs only when necessary; e.g., when WYSIWYG documents are required or there is a compelling reason (e.g., legal requirement). Do NOT use it as a “quick and dirty” way of getting content onto your site

· If you must post a PDF, make it as accessible as possible:

· Start with the original document if possible (e.g., the Word file)

· Clean up the Word file, using the built-in styles for formatting headings (use Heading 1, Heading 2, etc. appropriately)

· Tag image files with “alt text” within Word

· Use Acrobat Pro 7.0 or later to create a “tagged PDF” file

· Many PDF-to-HTML conversion tools are available

· Refer to www.webaim.org/techniques/acrobat for further information

Accessible JavaScript

JavaScript content and functionality must be made accessible to assistive technologies; pages must be fully navigable via the keyboard.

To make JavaScript accessible:

· Use object detection (find out if a particular object or method is supported before you use it)

· Use device-independent handlers (do not require the use of a mouse)

To avoid causing confusion, do not modify or override normal browser functionality. Pages should "transform gracefully" if JavaScript is not present (or not fully present). If native accessibility cannot be achieved, provide alternative content.

Accessible Flash

The latest version of Flash (MX) gives developers the ability to create Flash animations that include a sound glossary, adapt to the presence of screen-reader technology, and:

· Enable keyboard navigation

· Contain an accessibility menu

· Allows users to enlarge text and other content, pause movement, and turn off background sounds

Refer to www.webaim.org/techniques/flash/.

Module 15. Resources

Objectives

At the completion of this module, you will be able to:

Use the Web Accessibility Resources website created by Design Media

Link to the State of California 508 forums

Link to online resources for XHTML and CSS

List of Resources, by Category

WCAG Conformance

· W3C WAI recommendations: www.w3.org/TR/WAI-WEBCONTENT
· Details of WCAG checkpoints and how to implement them: http://www.w3.org/TR/WCAG10/full-checklist.html
Section 508 Compliance

· Summary of Section 508 standards: http://www.section508.gov/index.cfm?FuseAction=Content&ID=11
The New York Public Library Online Style Guide

· Excellent guide to adopting standards-based markup: www.nypl.org/styleguide/index.html
Code Evaluation

· W3C’s HTML validation service: http://validator.w3.org
· W3C CSS validation service: http://jigsaw.w3.org/css-validator
· W3C WAI (Web Accessibility Initiative) offers a complete list of Web accessibility evaluation tools: http://www.w3.org/WAI/ER/tools/complete

· See also http://www.w3.org/WAI/eval/selectingtools
Techniques for Creating Accessible Sites

· www.webaim.org/techniques/acrobat

· www.webaim.org/techniques/flash/
· http://www.webaim.org/techniques/forms/controls.php
· http://webaim.org/techniques/forms/screen_reader.php

· http://diveintoaccessibility.org/examples/notabletrick.html
· http://diveintoaccessibility.org/day_11_skipping_over_navigation_links.html
Module 16. Summary

Objectives

At the completion of this module, you will be able to:

List the key points of the training

Identify specific steps you will take to bring your websites into compliance with Section 508

Key Points

· California has adopted accessibility standards for State websites.

· Section 508 §1194.22 and WCAG 1.0 Double-A

· Five Best Practices

· Triple-A is an additional, higher standard

· XHTML and CSS are the basis of standards-based markup

· Resources are available to help you develop of accessible websites

· Accessible design makes Web access easier for all users

Eating the Elephant

At this point you probably feel overwhelmed by the amount of work required to bring your site fully into compliance with California’s Web accessibility requirements. This is understandable. But don’t worry! It is not necessary to do this all at once. You don’t have to “eat the elephant” in one gulp!

Small Bites

To make the elephant easier to get down, one suggestion would be to eat it in small bites. Start by committing today to writing good, clean, structurally sound XHTML from here on out—“Starting tomorrow, every page I touch will be brought into compliance with XHTML 1.0 Strict requirements.”

This will go a long way towards making your site more accessible.

The Elephant is Smaller Than You Think

In the DOR Web Accessibility Quick Reference, you’ll notice that the requirements are organized into categories like “Scripting” and “Frames.” Well, if your site doesn’t use frames, you get to ignore those requirements! That elephant just got a little bit smaller!

But What About My Non-Standard Templates?

Many State websites of course use older “legacy” templates that you may not have any control over. No worries! Your job is to make sure that no poorly marked-up content goes into those templates!

· Make a “test” template that is an empty page with an XHTML 1.0 Strict DOCTYPE and the standard <html> and <body> tags

· Copy and paste just your content into this test template and use the W3C validator to make sure that it validates perfectly! Once it does, simply copy and paste it back into the “legacy” template for your site

In this way, when the new accessible templates become available, your content will be ready to go!

Section 508

Now that you’ve got clean XHTML to work with, tackle just one page or perhaps one section of your site and bring it into compliance with Section 508. I would suggest tackling the most popular or most used sections of your site first. You can easily determine this by looking at your site statistics.

Set a goal for yourself of gradually bringing your content into compliance within three months or six months or whatever makes sense for you and your team.

Level A and Double-A Conformance

At this point, you may have one or more sections of your site that are in compliance with Section 508. Go ahead and tackle Level A conformance. Once that is complete, then you can set your sights on Double-A conformance.

State Best Practices

After you’ve completed all of the other requirements, you can tackle the five best practices adopted by the State of California. However, remember that some of these will be taken care of in the new templates that will become available, so you don’t have to worry about all of those!

Daily Practice

In the end, these new techniques will become part of your daily practice and will be as natural part of your thought process as the alt attribute.

Action Plan

Two things I plan to do to bring my own website into compliance:

1.

2.

By what date:

Resources I need or will use to take these actions:

41

43

39

61

7

71

63

73

5

77

75

9

11

13

25

35

